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Abstract
We study the class of languages of finitely-labelled countable linear orderings definable in two-
variable first-order logic. We give a number of characterisations, in particular an algebraic one
in terms of circle monoids, using equations. This generalises the corresponding characterisation,
namely variety DA, over finite words to the countable case. A corollary is that the membership
in this class is decidable: for instance given an MSO formula it is possible to check if there is an
equivalent two-variable logic formula over countable linear orderings. In addition, we prove that
the satisfiability problems for two-variable logic over arbitrary, countable, and scattered linear
orderings are Nexptime-complete.
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1 Introduction

Countable linear orderings are linear orderings over countable domains. They are of primary
interest in the context of satisfiability of logics due to a result of Shelah [24]: the satisfiability
problem of monadic second-order (MSO) logic is undecidable over arbitrary linear orderings,
and in particular over the Reals. But by Rabin’s theorem [18] the problem remains decidable
when considered over countable linear orderings. Thus the class of countable linear orderings
sets a natural limit to the decidability of satisfiability problem for MSO over linear orderings.
This is in sharp contrast with first-order (FO) logic, that has the corresponding question
decidable over arbitrary linear orderings. A second and perhaps more important reason
why the class of countable linear orderings are interesting is the logic-algebra connection on
its subclasses — MSO definable languages over finite words (resp. ω-words) are precisely
the class of languages definable by finite monoids (resp. ω-semigroups, equivalently Wilke
algebras) — extends to countable linear orderings: the result due to Carton-Colcombet-
Puppis [4] states that MSO definable languages of countable linear orderings are precisely
the class of languages of countable linear orderings recognisable by ◦-monoids (recalled in
the next section).

The principal import of such a connection is well displayed by the seminal theorem of
Schützenberger [21]: over finite words, FO definable languages are precisely the languages
recognisable by aperiodic finite monoids, in particular the syntactic monoids of FO definable
languages are aperiodic. This immediately yields the decidability of membership in the class
of FO definable languages: compute the syntactic monoid of the given language and check if
it is aperiodic. Since the time of Schützenberger numerous logics have been characterised
algebraically, over finite words, ω-words etc.

However, unlike finite words or ω-words, characterising a logic over countable linear order-
ings has the following added advantage: An algebraic, in particular decidable, characterisation
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67:2 FO2(<) over countable linear orderings

of a class of languages of countable linear orderings (for instance languages definable by
FO) in terms of ◦-monoids, immediately provides decidable characterisations over restricted
classes of countable linear orderings that are equationally definable (for instance finite words,
ω-words, bi-infinite words, rationals etc.). In that sense, characterising a logic algebraically
over the class of countable linear orderings in one shot characterises it over all equationally
definable subclasses.

An elaborate study over a variety of sublogics over countable linear orderings was done
in [6] where FO, FO[cut], WMSO, WMSO[cut], MSO[ordinals], MSO[scattered] etc. were
characterised algebraically. These characterisations show that WMSO with “cut” quantifiers
are equivalent to those with “ordinal” quantifiers, whereas the rest of the logics are expressively
different from each other. The study also gives decidability of membership for all these logics.

As a continuation, in this work we consider the class of languages of countable linear
orderings that are definable in two-variable first-order logic (FO2). Two-variable FO is
the fragment of FO with at most two variables x, y. While over abritrary structures FO
has an undecidable satisfiable problem, FO2 has a decidable, low complexity satisfiability
problem. Yet FO2 is expressive enough to contain modal logics. This feature of FO2 has
been thoroughly studied and the decidability of satisfiability has been extended to special
classes of structures as well as particular vocabularies. FO2 has been of significant interest
over words (and ω-words) as well. Over finite words, FO2 definable languages have numerous
characterisations [26, 25]: they are precisely the class of languages (1) definable in unary
LTL [26, 8], (2) recognisable by 2-way partially ordered DFA [22], (3) definable by turtle
expressions [27], and (4) whose syntactic monoids are in the variety DA [26] (a finite monoid
is in DA if it is aperiodic and all its regular D-classes are subsemigroups) etc. The last
characterisation also gives a decision procedure for membership in the class. Not only that
FO2 languages have numerous characterisations, they also have a rich structure inside them
[17]— they form an infinite hierarchy under quantifier alternations that is also decidable as
shown recently [12].

Though FO2 is well understood algebraically over finite words, its algebraic character-
isation over countable orderings, in particular over infinite ones, is not immediate. This is
because even with two variables one can express a variety of “infinitary” conditions: clearly
with two variables we can express that letter a has a minimum occurrence (for instance
by the formula ϕ1 = ∃y∀x (a(x) ∧ a(y) ∧ x ≥ y)), as well as its negation, that is there is
an infinite descending chain of a’s. Consider the following formula ϕ2 that says that if an
a-position has an a-position before it, then it has two a-positions before it.

ϕ2 = ∀x (a(x) ∧ ∃y (a(y) ∧ x > y)→ ∃y (a(y) ∧ x > y ∧ ∃x (a(x) ∧ y > x)))

The word aa, as well as aω∗ (the ordering (Z−, <) labelled with a) does not satisfy ϕ1 ∧ ϕ2
while the words a and aaω∗ satisfy ϕ1 ∧ ϕ2. Thus, as ϕ1 ∧ ϕ2 exemplifies, with two variables
one can stipulate both a minimum occurrence as well as existence of a descending chain of
a letter. Therefore for the algebraic characterisation of FO2 one has to make an intricate
analysis of whether the letters appear as a minimum or as an infinite chain at different factors
of the word.

In the rest of the section, we mention works that are related to the present paper and
our contributions.

Related Work

Algebraic characterisations, in particular for FO, for scattered linear orderings are given in
[1, 2, 5]. The connection between MSO over countable linear orderings and ◦-monoids was
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proved in [4]. It showed that MSO is equivalent to ◦-monoids. This gives an alternate proof of
decidability of MSO over countable linear orderings. Moreover it showed that MSO collapses
to the second level of the quantifier alternation hierarchy. An algebraic classification of MSO
under various forms of set quantifications, in particular corresponding to the sublogics FO,
FO[cut], WMSO, WMSO[cut], MSO[ordinals], MSO[scattered], was done in [6].

The literature on FO2 over arbitrary structures is extensive and we don’t mention it here.
FO2 over finite words as well as ω-words has been studied extensively [22, 26, 8, 25, 27, 12, 17].
A survey of various characterisations of FO2 is given in [25]. The quantifier alternation
hierarchy on FO2 was proved in [11] and the decidability of the hierarchy was shown in [12].

Satisfiability of FO2 over arbitrary structures were shown to be Nexptime-complete in
[10]. The corresponding results (also Nexptime-complete) was shown for ω-words in [8],
and for ordinals in [15]. More recently the satisfiability problem was studied for words with
additional linear orderings/preorderings [3, 23, 14, 13].

Satisfiability of LTL over countable linear orderings is Pspace-complete [7, 19].

Contributions

We study the two variable fragment of first order logic over countable linear orderings and
give a number of different characterisations. The simplest characterisation is in terms of
temporal logic (TL): FO2 is equivalent to TL with only the modalities Future (F) and Past
(P). Our major contribution is an algebraic characterisation for FO2. We show that it
corresponds to a subclass of ◦-monoids and give two algebraic characterisations for this
subclass: (1) by equations, and (2) as the class of ◦-monoids that are aperiodic and whose
regular J classes are sub ◦-monoids. It follows that the membership in the class is decidable.

Next we study the satisfiability problem for FO2 over countable linear orderings. The
models of FO2 formulas could be infinite, but we show that a satisfiable formula always
admits a scattered model that has a finite representation of small (exponential in the size of
the formula) size. Thus we prove that the satisfiability of FO2 over countable linear orderings
is Nexptime-complete. From this we also deduce that the satisfiability problems for FO2

over arbitrary and scattered orderings are Nexptime-complete.

Structure of the paper

In Section 2, we introduce words over countable linear orderings, two-variable first-order
logic, and the algebra required to characterise FO2, namely ◦-monoids. In Section 3 we prove
our main result (Theorem 8) which characterises FO2. Section 4 deals with the satisfiability
of FO2 over countable linear orderings. Finally we conclude our results in Section 5.

2 Preliminaries

In this section we recall the basic facts about (countable) linear orderings, ◦-monoids, logics
and related notions.

Words over countable linear orderings. A linear ordering α = (Z,<) is a set Z equipped
with a total order <. For X,Y ⊆ Z we write X < Y if x < y for each x in X and y in Y .
In particular ∅ < X < ∅ for any set X. Also if X < Y , Y < Z and Y is nonempty, then
X < Z. A cut of the linear ordering α is a pair (Z1, Z2) such that Z = Z1 ∪Z2 and Z1 < Z2.
The set of all cuts are linearly ordered and has the least upper bound property [2]. A set
L is a prefix of X if X = L ∪K and L < K for some K ⊆ X. Similarly if X = L ∪K and
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67:4 FO2(<) over countable linear orderings

L < K, then K is a suffix of X. Element z ∈ Z is an upperbound (resp. lowerbound) of a set
X ⊆ Z if x ≤ z (resp. z ≤ x) for each x in X. A set X is right-open (resp. left-open) if it
has no maximum element (resp. minimum element). Nonempty suffixes of right-open sets
are right-open and nonempty prefixes of left-open sets are left-open. The set X is dense if
between any two elements in the set there is another element; set X is scattered if it has no
dense subsets. An ordering is a countable (scattered) linear ordering if the set Z is countable
(scattered). See [20] for further details.

For a finite alphabet A and a linear ordering α = (Z,<), we define a word w : α → A

to be a mapping from the set Z to A. We call α the domain of w, dom(w). For a word w,
we say a point/position x to denote an element x ∈ dom(w). The notation w[x] denote the
letter at the xth position in w. A word has a minimal (respectively maximal) element if its
domain has a minimal (maximal) element. The word u is a suffix (prefix) of w if dom(u) is a
suffix (prefix) of dom(w). If u and v are words, then uv denotes the unique word w such
that (dom(u), dom(v)) is a cut of dom(w). This operation is naturally extended to a set of
words {wi}α indexed by a linear ordering α as

∏
i∈α wi (see [6] for more details). For a set

S ⊆ A, and a word w, we denote the restriction of w to the positions labelled by S as w|S .
That is w|S = {i ∈ dom(w) | w[i] ∈ S}.

The following words are of special interest. ε stands for the empty word (the word over an
empty domain). The word {a}ω (denoted in short as aω) denotes the word over the domain
(N, <) such that every position is mapped to the letter a. Similarly aω∗ denotes the word
over the domain (N−, <) where every position is mapped to letter a. A perfect shuffle over a
nonempty set S ⊆ A of letters, denoted by Sη, is the word over domain (Q, <) such that
any nonempty open interval contains each of the letters in S. This is a unique word (up to
isomorphism) (see [4]) and is an example of a dense word, i.e. a word whose domain is dense.

For an alphabet A, the set of all words over nonempty countable domains is denoted by
A◦. For a word w, we define alphabet(w) to be the set of all letters in w. A language over
the alphabet A is a subset of A◦. The language {a}∞ ⊆ {a}◦ (or written as a∞) denotes
all words which are right open. Similarly for a set S ⊆ A, the language S∞ is the set of all
words whose letters come only from S and any letter from S can be seen arbitrarily towards
the right. The sets a−∞ and S−∞ are defined analogously.

Circle monoids and algebras. A ◦-semigroup M = (M,π) consists of a set M with an
operation π : M◦ → M which satisfies the following two properties (1) π(a) = a for all
a ∈M , (2) generalised associativity property – that is π

(∏
i∈α ui

)
= π

(∏
i∈α π(ui)

)
for every

countable linear ordering α. If M has an identity element, then it is called a ◦-monoid. An
element e ∈M is an idempotent if π(ee) = e.

For the rest of the paper, we assume that the monoid M is finite, that is M is a finite
set. The product π is over countable linear orderings and hence it is not possible to finitely
represent π. Fortunately, we are able to represent this by a ◦-algebra that uses only finite
sets and finitely many operations. The following operations are derivable from a ◦-monoid
M = (M,π):

Finite product, · : M2 →M such that ·(a, b) = π(ab)
Omega, ω : M →M such that ω(a) = π(aω)
Omega∗, ω∗ : M →M such that ω∗(a) = π(aω∗)
Shuffle, η : P(M)→M such that {a1, . . . , ak}η = π({a1, . . . , ak}η)

The resulting structure (M, ·, ω, ω∗, η) is called a ◦-algebra if it satisfies some additional
axioms relating the operations (for example a · aω = aω, (aη)ω = aη etc.). We skip these
details and refer the reader to the paper by Carton et. al [4] for a detailed discussion. The
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relavant fact is that, for any ◦-monoid there exists a unique ◦-algebra and vice versa [4].
An important “tool” to understand finite monoids (in our case ◦-monoids) is Green’s

relations. In a ◦-monoid M, we say that two elements u ≥J v if there exists two elements
x, y ∈M such that v = xuy and uJ v (called J equivalent) if it is both u ≥J v and v ≥J u.
We also say that two elements are u ≥R v (similarly u ≥L v) if there exists an element
x ∈ M such that v = ux (v = xu). Also uRv if u ≥R v and v ≥R u. Similarly we can
define uLv. The relations L and R are right and left congruences respectively. If a J class
contains an idempotent then it is called a regular J class. All elements in a J class can be
described by an “eggbox” structure, such that uJ v iff there exists elements x, y ∈M such
that uRxLyRv. For a more detailed elaboration on this subject see [16].

The class of ◦-monoids that satisfies the property — there exists an n ∈ N such that
an = an+1 for all a ∈ M — are called aperiodic. It is precisely the class of ◦-monoids
which do not contain any non-trivial group as a subsemigroup of (M, ·) (by Schützenberger’s
theorem [21]).

One way to denote a class of ◦-monoids is by equations. For instance, we say that M
satisfies the equation x∗ = xωxω

∗ , if for all elements a ∈ M, a∗ = aωaω
∗ , where a∗ is the

unique idempotent power of a.
We say that a language L ⊆ A◦ is recognised by the ◦-monoid M, if there is a morphism,

γ : A◦ → M and a subset S ⊆ M such that L = γ−1(S). The syntactic ◦-monoid of
a language L is the minimal ◦-monoid M recognising L that has the following universal
property: any ◦-monoid recognising L has a morphism onto M.

Logics. Monadic second-order logic (MSO) over a finite alphabet A is a logic which can be
inductively built using the following operations.

a(x) | x < y | x = y | α1 ∨ α2 | ¬α | x ∈ X | ∃x α | ∃X α

Here a ∈ A. If we remove the second-order quantification, we get first-order logic (FO). If
we further restrict the logic to use only two variables (but allowing repetitions) we get FO2.
Note that, we do not have the successor relation in our logic.

A formula with no free variables is called a sentence. The language of a sentence ϕ
(denoted by L(ϕ)) is the set of all u ∈ A◦ that satisfies ϕ.

Over finite words, FO2 can talk about occurrence of letters and also about the order in
which they appear [8, 27]. Over countable linear orders, FO2 can also talk about an infinite
sequence of a letter. For example, the language a∞ is definable in FO2 by stating that, every
position is labelled by a and there is no maximum position.(

∀x ∃y > x
)
∧
(
∀x a(x)

)
Also, for a subset S ⊆ A, we can also express the language S∞ in FO2.(

∀x
∧
a∈S

∃y > x a(y)
)
∧
(
∀x

∨
a∈S

a(x)
)

Analogously, FO2 can also talk about left open words.
The temporal logic {F, P}-TL over the alphabet A is the logic with the set of formulas —

a when a is a letter in A, and Fϕ and Pϕ when ϕ is a formula — that is closed under Boolean
operations. To state the semantics fix a word u ∈ A◦. A position i ∈ dom(u) satisfies —
the formula a if i is labelled with the letter a, and the formula Fϕ (resp. Pϕ) if there is a
position i < j ∈ dom(u) (resp. i > j ∈ dom(u)) that satisfies the formula ϕ. The semantics
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67:6 FO2(<) over countable linear orderings

for Boolean connectives are defined in the usual way. The word u satisfies the formula ϕ if
there is a position i ∈ dom(u) that satisfies the formula (see [8] for a detailed presentation).
The language of the formula ϕ is the set of all u ∈ A◦ that satisfies ϕ.

3 Characterisation

In this section, we give the algebraic characterisation for FO2(<) over countable linear
orderings. As we noted earlier, ◦-monoid captures MSO. Here we identify a subclass
which will capture the two-variable first-order fragment. Our characterisation builds on
the characterisation for FO2 on finite words given in [26]. In particular, we crucially use a
generalisation of the congruence given there.

I Definition 1. We define ◦-DA to be the subclass of ◦-monoids that satisfy the following
equations.
1. (xyz)∗y(xyz)∗ = (xyz)∗
2. x∗ = (x)ω(x)ω∗

3. {x1, . . . , xk}η = (x1 · · ·xk)ω∗(x1 · · ·xk)ω
The first equation corresponds to the variety DA of finite monoids [25]. It identifies the
constraints the product operation has to satisfy. The second equation corresponds to FO
definable languages of countable linear orderings [6]. This equation states that a J class
with an idempotent will also contain its omega and omega∗ powers. The last equation says
that, ◦-DA cannot differentiate between dense and scattered orderings.

The connection between logic and algebra is established using the following congruence.

A congruence on words

Let u ∈ A◦ be an arbitrary word. alphabet(u) is defined as the set of all letters occurring in
u. For a letter a in alphabet(u), let Pu(a) denote the set of all positions in u labelled with a.
Let T 1

r (u) ⊆ alphabet(u) be the set of all letters a such that Pu(a) has a maximal element.
Furthermore, let Tωr (u) be the set alphabet(u) \ T 1

r (u), i.e. the set of all letters that do not
have a maximal occurrence. Similarly let T 1

l (u) ⊆ alphabet(u) be the set of all letters a such
that P (a) has a minimal element, and let Tω∗l (u) be the set alphabet(u) \ T 1

l (u).

I Definition 2. The relation .r over the set of letters Tωr (u) is defined as follows:

a .r b if each a-position i in u has a b-position j to its right (i.e. j > i).

I Lemma 3. The relation .r is a total preorder on the set Tωr (u).

Proof. Since for each letter a in Tωr (u) the set Pu(a) does not have a maximum, clearly
a .r a. Next, let a, b, c ∈ Tωr be such that a .r b and b .r c. By definition of .r, every
a-position has a b-position to the right, which in turn has a c-position to its right. Hence
a .r c. It only remains to show that .r is total. Assume a 6.r b. By definition, there is an
a-position i that has no b-position to its right. Hence all b-positions lie to the left of i, and
therefore every b-position has an a to its right, and therefore b .r a. J

We write ∼r to denote the equivalence relation associated with the preorder .r. For a
letter a in Tωr (u) we let [a]r ⊆ Tωr (u) denote the equivalence class of a with respect to the
total preorder .r, i.e. [a]r = {b ∈ Tωr (u) : b ∼r a}. Also, we extend the definition of Pu to
equivalence classes by defining Pu([a]r) =

⋃
a∈[a]r

Pu(a). We write <r to denote the total
order on {[a]r : a ∈ Tωr (u)}.
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By symmetry, the dual relation .l defined as,

b .l a if each a-position in u has a b-position to its left,

is also a total preorder. The corresponding equivalence relation and strict order relation
are denoted as ∼l and <l. Given a circle word u the preorders .r and .l associated with
u are called the right preorder and left preorder of u respectively. As before we define
Pu([a]l) =

⋃
a∈[a]l

Pu(a).

I Example 4. Let S = {a, b} and let u ∈ S−∞ be an arbitrary word. Consider the word
v = uaω

∗
aωabω ∈ {a, b}◦. Then T 1

l (u) = T 1
l (v) = ∅ and Tω∗l (u) = Tω

∗

l (v) = {a, b}, since a
and b occur infinitely often towards left in both u and v. It also follows that a .l b and
b .l a. Since u is an arbitrary word, we do not know about T 1

r (u) and Tωr (u). But, since a
has a maximum point in v, we have T 1

r (v) = {a} and Tωr (v) = {b}. Moreover b .r b.
Consider another word w = aωbω. Here we have T 1

l (w) = {a, b} and Tω∗l (w) = T 1
r (w) = ∅.

We also have Tωr (w) = {a, b} and a .r b but b 6.r a.

We will now introduce left/right decomposition of words. The idea is to factorise a word
in a particular way to capture the “pivot” points for an FO2 formula.

I Definition 5. Let a ∈ alphabet(u). If a ∈ T 1
l (u), then there exists a unique factorisation

of u as (u0, a, u1) such that u = u0au1 and a /∈ alphabet(u0). This is called the a-left
decomposition of u. Similarly there is a unique factorisation of u as (u0, a, u1) such that
a /∈ alphabet(u1), if a ∈ T 1

r (u). This is called the a-right decomposition of u.
We are also interested in left decomposition obtained by a set of positions Pu([a]l),

where [a]l ∈ Tω
∗

l (u)/ ∼l. That is for a subset of positions Pu([a]l) of u, we define the
Pu([a]l)-left decomposition of a word u to be the unique maximal cut (u0, u1) such that
Pu([a]l) ∩ dom(u0) = ∅. Note that if S = {b | b ∼l a}, then there is a prefix of u1 such that
u1 ∈ S−∞. This follows from the fact that, the decomposition (u0, u1) is a maximal cut.
Similarly the Pu([a]r)-right decomposition of a word u is defined to be the unique minimal
cut (u0, u1) such that Pu([a]r) ∩ dom(u1) = ∅.

With the left/right decomposition defined, we can define the congruence on words, ≡n
which essentially captures a sequence of unique decompositions.

I Definition 6. For an alphabet A, a natural number n ∈ N and words u, v ∈ A◦, we define
u ≡n v by induction on m = n+ |A| as follows.
1. If n = 0 (the base case): u ≡0 v for all u, v ∈ A◦.
2. If n > 0: We say u ≡n v if the following conditions are satisfied:

a. alphabet(u) = alphabet(v), T 1
r (u) = T 1

r (v), and T 1
l (u) = T 1

l (v). (This condition
implies that Tωr (u) = Tωr (v) and Tω∗l (u) = Tω

∗

l (v)).
b. The right preorders of u and v (both on the same set by the previous observation) are

the same. Similarly the left preorders of u and v are the same. (We denote the left
and right preorders as .l,.r respectively).

c. For each a ∈ T 1
l (u) = T 1

l (v), let (u0, a, u1) be the a-left decomposition of u, and let
(v0, a, v1) be the a-left decomposition of v, then u0 ≡n v0 and u1 ≡n−1 v1. Note that
the induction parameter has reduced in both cases: u0 has at least one letter less than
u; and we have a lesser congruence in u1.

d. Similarly, for each a ∈ T 1
r (u) = T 1

r (v), let (u0, a, u1) be the a-right decomposition of u
and let (v0, a, v1) be the a-right decomposition of v, then u0 ≡n−1 v0 and u1 ≡n v1.
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67:8 FO2(<) over countable linear orderings

e. For each class [a]l ∈ Tω
∗

l (u)/∼l = Tω
∗

l (v)/∼l, let (u0, u1) be the Pu([a]l)-left decom-
position of u and let (v0, v1) be the Pv([a]l)-left decomposition of v, then u0 ≡n v0
and u1 ≡n−1 v1. Again, the induction parameter has reduced in both cases: u0 has at
least one letter less than u; and we have a lesser congruence in u1.

f. Similarly for each class [a]r ∈ Tωr (u)/∼r = Tωr (v)/∼r, let (u0, u1) be the Pu([a]r)-
right decomposition of u and let (v0, v1) be the Pv([a]r)-right decomposition of v, then
u0 ≡n−1 v0 and u1 ≡n v1.

I Lemma 7. The relation ≡n is a congruence relation for every n ∈ N.

Proof. To prove the claim we need to show that for each words u, v, w ∈ A◦, if u ≡n v, then
uw ≡n vw and wu ≡n wv. The cases are symmetric and we consider only the first case. We
prove the claim using induction on n+ min (|alphabet(u)|, |alphabet(v)|). When n = 0, there
is nothing to show.

Next assume that n > 0 and u ≡n v. If min (|alphabet(u)|, |alphabet(v)|) = 0 then
u = v = ε and the claim is obvious. Otherwise u 6= ε 6= v. Since u ≡n v, it is clear that
alphabet(uw) = alphabet(u)∪alphabet(w) = alphabet(v)∪alphabet(w) = alphabet(vw). Sim-
ilarly T 1

l (uw) = T 1
l (u) ∪

(
T 1
l (w) \ alphabet(u)

)
= T 1

l (v) ∪
(
T 1
l (w) \ alphabet(v)

)
= T 1

l (vw),
and T 1

r (uw) = T 1
r (w) ∪

(
T 1
r (u) \ alphabet(w)

)
= T 1

r (w) ∪
(
T 1
r (v) \ alphabet(w)

)
= T 1

r (vw).
Next we verify that the left-preorders of uw and vw are the same. Assume b .l a is in

the left preorder of uw. There are two cases to consider, depending on whether a /∈ Tω∗l (u)
or not.
1. a /∈ Tω∗l (u) : Hence a ∈ Tω∗l (w). If b ∈ Tω∗l (u), then by assumption b ∈ Tω∗l (v) and

therefore b .l a is in the left preorder of vw. If b /∈ Tω∗l (u), then b .l a is in the left
preorder of w and therefore b .l a is in the left preorder of vw.

2. a ∈ Tω∗l (u) : Therefore b .l a is in the left preorder of u and therefore of v and vw.
Similarly if b .r a is in the right preorder of uw we have that b .r a is in the right preorder
of vw.

We need to now show that a left/right decomposition is in uw iff it is in vw. We will
show if uw has a particular decomposition then vw will have that decomposition such that
the congruence on the factors satisfy appropriately. Symmetrically we can show the same
claim for vw. This will give us that uw ≡n vw.
1. Let (u0, a, w1) be a a-left decomposition of uw: If a ∈ alphabet(u), then there is an

a-left decomposition of u = (u0, a, u1) such that w1 = u1w. Therefore, there exists
an a-left decomposition of v = (v0, a, v1) and hence there is an a-left decomposition
of vw = (v0, a, v1w). Since u ≡n v, we have u0 ≡n v0 and u1 ≡n−1 v1. By inductive
hypothesis, we therefore have u1w ≡n−1 v1w. On the other hand if a /∈ alphabet(u), then
there is an a-left decomposition of w = (w0, a, w1). If follows that a /∈ alphabet(v) and
therefore there is an a-left decomposition of vw = (vw0, a, w1). Its clear that uw0 ≡n vw0.

2. Let (u0, w1) be a Puw ([a]l)-left decomposition of uw. We will look at two cases
a. Let {a, b} ⊆ Tω∗l (u): Then there exists a Pu ([a]l)-left decomposition (u0, u1) of u such

that w1 = u1w. Therefore by our assumption, there exists a Pv ([a]l)-left decomposition
of v = (v0, v1) and hence there exists a Pvw ([a]l)-left decomposition of vw = (v0, v1w)
such that u0 ≡n v0 and u1w ≡n−1 v1w.

b. Let {a, b} ∩ Tω∗l (u) = ∅: Then {a, b} ∩ Tω∗l (v) = ∅ and there exists a Pw ([a]l)-
left decomposition of w = (w0, w1). Therefore vw = (vw0, w1) is a Pvw ([a]l)-left
decomposition of vw. Its clear that uw0 ≡n vw0.

3. A similar cases analysis can be given for both right decompositions.

We have now showed that uw ≡n vw. This concludes our proof. J
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Main theorem

We are now in a position to state our main theorem.

I Theorem 8. Let L ⊆ A◦. Then the following are equivalent:

1. L is definable in {F, P}-TL.
2. L is FO2(A,≤) definable.
3. L is a union of ≡n congruent classes for some n ∈ N.
4. L is recognised by a ◦-DA.
5. L is recognised by an aperiodic ◦-monoid where all regular J classes are sub ◦-monoids.
6. The syntactic ◦-monoid of L is in ◦-DA.
The proof of (1⇔ 2) follows easily (see [8, 7]).
In subsection 3.1 we show the equivalence of the different monoid views (4⇔ 5⇔ 6).
In subsection 3.3 we show (4⇒ 3).
To prove (2⇒ 4), we use 2-pebble Ehrenfeucht-Fraïssé (EF) games [26]. The EF game gives
a game congruence ∼=n defined as: u ∼=n v if the duplicator wins the n-round 2-pebble game
on the pair of words (u, v). See [26] for the game congruence and its equivalence to FO2.
Thus it suffices to show that the game congruence satisfies the equations of ◦-DA.
To show direction (3⇒ 2) we follow the proof in [26]. It suffices to show that if L ⊆ A◦ is a
union of ≡n congruent classes for some n, then it is definable in FO2(<). More precisely we
prove the following lemma (again using the equivalence of game congruence ∼=n and FO2).

I Lemma 9. For words u, v ∈ A◦, If u 6≡n v, then u 6∼=n+alphabet(u) v i.e. the spoiler has a
winning strategy in the 2-pebble n+ alphabet(u)-round EF game on u and v.

Since the syntactic ◦-monoid (and its finite representation using ◦-algebra) is computable
given an MSO formula [4], it follows that it is decidable to check whether the language is
FO2 definable.

I Corollary 10. For a sentence φ in MSO[<], it is decidable whether L(φ) is FO2[<] definable.

In the next subsection we show the equivalence of the different monoid views. The
subsection after that shows that if a language is accepted by a ◦-monoid, then it is a union
of congruence classes ≡n for some n ∈ N.

3.1 The different Monoid views
In this subsection we show that the different views of ◦-DA are equivalent. That is, (4⇔
5 ⇔ 6) of Theorem 8. The direction (4 ⇒ 5), follows from standard ideas in semigroup
theory

Proof of Theorem 8, (4⇒ 5). Let M be a ◦-monoid, which satisfies the (3) equations in
Definition 1. First we show that M is aperiodic. This follows from, equation (2), since
an = aωaω

∗ = a(aωaω∗) = an+1.
We need to now show that all regular J classes of M are sub ◦-monoids. In other

words, we need to show that a regular J class is closed under operations, finite product,
omega, omega∗ and shuffle. Let J be a regular J class. From equation (1) of ◦-DA it
follows that J is closed under finite product. Let x ∈ J . We will show that xωRx. Since
J is closed under product, xnRx. From equation (2), (xn)R(xn)ω. Similarly we that J
is closed under omega∗. We need to now show that J is closed under shuffle operation.
Consider the element t = {a1, . . . , ak}η where a1, . . . , ak ∈ J . By equation (3), we get that
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t = (a1 . . . ak)ω∗(a1 . . . ak)ω. Since J is closed under concatenation/omega/omega∗ operation,
it follows that t ∈ J and hence J is closed under shuffle too. J

The reverse direction (5⇒ 4), follows from the below lemma:

I Lemma 11. Let M be an aperiodic ◦-monoid such that all regular J classes of M are sub
◦-monoids. Let γ : A◦ →M be a morphism and u ∈ A◦, such that γ(u) = e an idempotent.
Then, for all words v ∈ {alphabet(u)}◦, we have γ(uvu) = γ(u).

Proof. Consider the evaluation tree of the word v. The evaluation tree is a bounded height
tree. Each node in the tree represents the morphism of a factor of v. The value at the root
of the tree is γ(v). For a detailed study on evaluation trees, refer [4].

We will now inductively show the following property in the tree. If t is the value at a
particular node, then ete = e. We are done, once we show this, since the value at the root
node is γ(v) and therefore eγ(v)e = e. Our proof depends on the type of the node.

Leaf node: Let the node be the letter a ∈ alphabet(u). Without loss of generality let
us denote by γ(a) = a. Therefore e = xay. Hence e = ee J exa J exae J ae J eae.
Here we used the fact that the J class is regular (since idempotent e is in that class) and
therefore closed under finite product. Since e ≥R eae and e ≥L eae, we have e = eae.
Value of node t = l.r: From IH, elJ reJ e. Hence elre = e.
Value of node t = fω: By IH, efe = e and fJ fω. Therefore fωx = f , for an x ∈M and
hence e = efeJ efωJ efωe. Therefore ete = e.
Value of node t = fω

∗ : By IH, efe = e and fJ fω∗ . Therefore xfω∗ = f , for an x ∈M
and hence e = efeJ fω∗eJ efω∗e. Therefore ete = e.
Let value of node t = {a1, . . . , ak}η: Let S = {a1, . . . ak} and f = (a1 . . . ak)n. Our
aim is to show that Sη = fω

∗
fω. Since Sη and f are idempotents they are members

of a regular J class. The following relations follow from equations of ◦-monoids (one
can also view it as from uniqueness of perfect shuffle) [4]. fJ fηJ a1f

ηJ {a1, f}ηJ {S ∪
f}ηJ {f, Sη}ηJ (fSη)ηJ fSηJ Sη.
Since fJ Sη, we have, t = Sη = fω

∗
fω. Therefore eSηe = efω

∗
fωe. The claim now

follows from the previous 4 cases.
We have shown that for all t in some node ete = e. This proves our claim. J

Using the above lemma, we can show the following direction of Theorem 8.

Proof of Theorem 8, (5⇒ 4). Let M be an aperiodic ◦-monoid such that all regular J
classes are sub ◦-monoids. We show that all equations of ◦-DA given in Definition 1 are
satisfied.
1. Equation (xay)na(xay)n = (xay)n. Since (xay)n = e is an idempotent, the equation

follows from Lemma 11.
2. Equation xn = (xn)ω(xn)ω∗ : Since xn = e is an idempotent, follows from Lemma 11.
3. Equation {x1, . . . , xk}η = (x1 . . . xk)ω∗(x1 . . . xk)ω: Since both elements are in a regular
J class, the equation follows from Lemma 11.

J

To prove direction (4⇒ 6), assume L is recognised by a monoid in ◦-DA. Since, ◦-DA is
closed under quotienting, it follows that the syntactic monoid of L satisfies the equations of
◦-DA (see [6] for more details about syntactic congruence and monoids).
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3.2 Congruence on words to Logic

I Lemma 9. For words u, v ∈ A◦, If u 6≡n v, then u 6∼=n+alphabet(u) v i.e. the spoiler has a
winning strategy in the 2-pebble n+ alphabet(u)-round EF game on u and v.

Proof. We prove the claim by induction on n+ alphabet(u). When n = 0, then all words
u, v ∈ A◦ are ≡0-equivalent, and the claim is vacuously true. Now assume n > 0 and
u, v ∈ A◦ are such that u 6≡n v. We have several cases.

If alphabet(u) 6= alphabet(v) then Spoiler wins the game in 1 move: Without loss of
generality, she picks a letter a ∈ alphabet(u) \ alphabet(v) 6= ∅ and Duplicator has no
successful response since the word v does not contain the letter a.

If T 1
l (u) 6= T 1

l (v), then spoiler wins the game in 2 moves: Without loss of generality
assume that T 1

l (u) \ T 1
l (v) 6= ∅ and let a ∈ T 1

l (u) \ T 1
l (v). Spoiler picks the minimum

occurrence of the letter a in u. Duplicator picks a letter a in v (otherwise she immediately
loses) and Spoiler responds by picking an a-position to its left. Duplicator does not have an
a-position to pick in the word u to the left of the pebble already in u and she loses. The
case of T 1

r (u) 6= T 1
r (v) is similar.

Next assume that alphabet(u) = alphabet(v) and T 1
l (u) = T 1

l (v) (hence Tω∗l (u) =
Tω
∗

l (v)), but the left-preorders of u and v differ. Then there is a pair b .l a that is in one
of the preorders, but not in the other, for some a, b ∈ Tω∗l (u) = Tω

∗

l (v). Without loss of
generality assume that b .l a is in the left-preorder of u, but not in the left-preorder of
v. Therefore, in u each a-position has a b-position to its left, but not in v. Hence in v,
there exists an a-position that is to the left of all the b-positions. We claim that the Spoiler
has a winning strategy in 2 moves: She picks an a-position in v that has no b to the left,
the Duplicator has to respond by picking an a-position in u. The Spoiler then pebbles a
b-position to the left of the a-position picked by the Duplicator. Duplicator has no successful
move and she loses. The case when alphabet(u) = alphabet(v) and T 1

r (u) = T 1
r (v), but the

right-preorders of u and v differ, is similar.
Next assume that a ∈ T 1

l (u) = T 1
l (v), and (u0, a, u1), (v0, a, v1) are the a-left decompos-

itions of u and v respectively, but either u0 6≡n v0 or u1 6≡n−1 v1. Let dom(u0) < {i} <
dom(u1) and dom(v0) < {i′} < dom(v1) be the positions corresponding to the a’s sandwiched
between u0, u1 and v0, v1 respectively. We have two cases. For the first case, assume that
u0 6≡n v0. Then by induction hypothesis Spoiler has a winning strategy in the n+ α(u)− 1
round game on (u0, v0). For the game on u0 and v0, Spoiler mimics this strategy and wins,
or at some point Duplicator places a pebble in a position that is not in u0 or v0. Let j ∈ u1
be the position pebbled by the Duplicator; j cannot be i since v0 does not contain any
a-position (and hence will be immediately losing). In the following move, Spoiler pebbles
the position i in u and Duplicator is forced to respond with an a-position in v0 and loses.
For the second case, assume that u1 6≡n−1 v1. Then by induction hypothesis Spoiler has a
winning strategy in the n − 1 + α(u) round game on (u1, v1). Again, Spoiler follows this
strategy until she wins the game or at some point Duplicator pebbles a position (say using
the red pebble) in (dom{u0} ∪ {i})

⋃
(dom{v0} ∪ {i′}). Without loss of generality assume

the position is in dom{u0} ∪ {i}, then Spoiler responds by pebbling the position i′ using the
blue pebble. Duplicator is forced to respond by pebbling an a-position in u0 and loses.

The case for a-right decompositions follows from symmetry.
Next assume that Tω∗l (u) = Tω

∗

l (v) and the left-preorders of u and v are the same.
Furthermore, assume that [a]l ∈ Tω

∗

l (u)/∼l = Tω
∗

l (v)/∼l, and let (u0, u1) be the Pu([a]l)-left
decomposition of u and let (v0, v1) be the Pv([a]l)-left decomposition of v, but either u0 6≡n v0
or u1 6≡n−1 v1. We have two cases. For the first case, assume that u0 6≡n v0. Then by
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induction hypothesis Spoiler has a winning strategy in the n+alphabet(u)−1 game on u0 and
v0. Spoiler follows this winning strategy in the game on u0 and v0, either winning the game
or at some point Duplicator puts a pebble in u1 or v1 (say on u1 without loss of generality).
Then Spoiler responds by placing the other pebble on an a-position to its left, where a ∈ [a]l.
Such a position is guaranteed to exist by definition of Tω∗l (u) and the cut (u0, u1). Duplicator
is forced to respond by pebbling an a-position in v0, and loses the game since v0 does not
contain any a-position. For the second case, assume that u1 6≡n−1 v1. Again, by induction
hypothesis Spoiler has a winning strategy in the n− 1 + alphabet(u)-round game on u1 and
v1. Spoiler plays according to this winning strategy, either winning the game, or Duplicator
places a pebble (say blue pebble) at a position in u0 or v0 at some moment (say in u0 without
loss of generality). Then spoiler responds by placing the red pebble on an a-position in v1
that is to the left of the blue pebble in v1, where a ∈ [a]l. Duplicator cannot replicate this
move in u0 since all a-position are in u1 and she loses.

The case of right-preorder classes is similar. This concludes the all the cases and therefore
u 6≡n v. J

3.3 Algebra to Congruence
In this subsection we show direction (4 ⇒ 3) of Theorem 8. The proof improves on the
equivalence of the congruence and algebra given in [26]. We show that a language recognisable
by a ◦-monoid in ◦-DA, satisfies the congruence relation ≡n for some n ∈ N. Let L be
recognised by the morphism γ : A◦ →M, where M is in ◦-DA. It suffices to show that there
exists an n ∈ N such that ≡n is a finer congruence than the monoid congruence. That is
for u, v ∈ A◦, if u ≡n v, then γ(u) = γ(v). Since M is an aperiodic monoid (follows from
equations of ◦-DA) it is sufficient to show that uRv and uLv.

The left/right decomposition of words are closely related to how the R classes fall in the
word. The following definition identifies a sequence of R-smooth factors (those factors where
there is no R fall), and the subsequent lemma shows there exists such a unique sequence.

I Definition 12. Let γ : A◦ →M. Let w ∈ A◦. Then the R decomposition of w is defined
as the sequence (w0, a1, w1, a2, . . . , ak, wk) such that
1. ai ∈ A ∪ {ε} and wi ∈ A∗, for all i ≤ k.
2. w = w0a1 . . . akwk.
3. For each 0 < i ≤ k, if ai is empty, then the following conditions hold:

a. wi does not have a left end point.
b. (w0a1 . . . aiw

′
i) R γ(w0a1 . . . aiwi), for all nonempty prefix w′i of wi.

c. γ(w0a1 . . . wi−1) ��R γ(w0a1 . . . wi−1aiwi).
4. For each 0 < i ≤ k, if ai is not empty, then the following holds:

a. γ(w0a1 . . . ai) R γ(w0a1 . . . aiwi).
b. γ(w0a1 . . . wi−1) ��R γ(w0a1 . . . wi−1ai).

I Lemma 13. Let w ∈ A◦ be an arbitrary word. Then, there is a unique R decomposition
(w0, a1, . . . , ak, wk) of w.

Proof. Let w ∈ A◦. By a sequence of operations we get the factors w0, a1, . . . , wk. We first
get w0 and a1 and then show how to inductively built other wi’s and ai’s.

Let (w0, w
′
0) be a factorization of w such that w0 is the maximal prefix of w where w0 is

R smooth. If w′0 is not left-open, let w′0 = a1w
′′
0 . Otherwise take a1 = ε. Rewrite w′0 with

w′′0 if ai 6= ε.
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Now we do the following procedure for i counting from 1 to k. Let (wi, w′i) be a
factorization of w′i−1 such that wi is the maximal prefix of w′i−1 where for all prefix u (if
ai 6= ε, u should not be ε) of wi, we have γ(w0a1 . . . aiu)Rγ(w0a1 . . . aiwi). If w′i is not
left-open, let w′i = ai+1w

′′
i . Otherwise take ai = ε. Rewrite w′i with w′′i if ai 6= ε.

The sequence we get from the above procedure (w0, a1, . . . ak, wk) satisfy all the properties
of R decomposition. J

The following Lemma connects R decompositions and left decompositions.

I Lemma 14. Let (w0, a1, . . . , ak, wk) be the R decomposition of w. Then, for each 0 < i ≤ k,
1. If ai is not empty, then ai /∈ alphabet(wi−1).
2. If ai is empty, then there exists an a /∈ alphabet(wi−1) such that a ∈ Tω∗l (w′i) for all

nonempty prefix w′i of wi.

Proof. We first need a property to understand when there is no R class drop.

I claim (?). Let x, y, z ∈ A◦ such that γ(x)Rγ(xy) and alphabet(z) ⊆ alphabet(y). Then
γ(x)Rγ(xyz).

Proof. From the assumptions we have a t ∈ A◦, such that γ(x) = γ(xyt) = γ(x(yt)n). From
Lemma 11, we know that γ((yt)nz(yt)n) = γ((yt)n). Therefore γ(x)Rγ(xyz). J

We prove the property for all 0 < i ≤ k. Our proof depends on two cases, if ai is empty or
not.
1. Let ai be non empty and let us assume for the sake of contradiction wi−1 = xaiy, where

x 6= ε if wi−1 is left open. Then

γ(w0 . . . ai−1x)Rγ(w0 . . . ai−1xaiy) (∵ Only one of ai−1 and x can be empty)
Rγ(w0 . . . ai−1xaiyai) . (From (?))

This is a contradiction.
2. Let ai be empty, then by definition wi does not have a minimal point. Let S =
{b1, . . . , bl} ⊆ Tω

∗

l (w′i) for all non empty prefix w′i of wi. We will show that there exists
a b ∈ S, such that b /∈ alphabet(wi−1). Let us assume for the sake of contradiction that
wi−1 = x0b1x1 . . . blxl, where xi ∈ A◦ can be empty. Then we have

γ(w0 . . . ai−1x0)Rγ(w0 . . . ai−1wi−1) (∵ Only one of ai−1 and x0 can be empty)
Rγ(w0 . . . ai−1wi−1w

′
i) . (From (?))

This is a contradiction.
J

We are now in a position to prove our claim.

Proof of Theorem 8, (4⇒ 3). We show that if u ≡m v for a sufficiently large m (depending
only on alphabet(u) and M), then γ(u)Rγ(v). The L equivalence can be shown symmetrically.
As discussed in the beginning, this proves our claim. Our induction hypothesis is as follows:

If u ≡m v for an m > |alphabet(u)| × |M|, then γ(u) = γ(v).

The base case, when m = 0 is clearly true, since u = v = ε (note that, in this case
alphabet(u) = ∅). Let us now consider the inductive step, for m > 0, we have u ≡m v. Our
aim is to show that γ(u) = γ(v). Consider the R decomposition of u = (u0, a1, u1, . . . , ak, uk).
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We give a sequence v = (v0, a1, v1, . . . , ak, vk) such that γ(ui) = γ(vi) for all i < k and hence
γ(u) ≥R γ(v).

Define u′i = uiai+1 . . . uk, for all i ≤ k. We do the following procedure for i ranging
from 1, 2, . . . , k. During every iteration of i, we give v′i, a suffix of vi such that the invariant
u′i ≡m−i v′i is maintained. To start the iteration we set v′0 = v and u′0 ≡m v′0

1. If ai is non empty, then (ui−1, ai, u
′
i) is the ai-left decomposition of the word u′i−1 (follows

from Lemma 14). Since (u′i−1 ≡m−(i−1) v
′
i−1), there exists an ai-left decomposition of

v′i−1 = (vi−1, ai, v
′
i) such that ui−1 ≡m−(i−1) vi−1 and u′i ≡m−i v′i.

2. If ai is empty, then (ui−1, u
′
i) is an [a]l-left decomposition of the word u′i−1 for an

[a]l ∈ Tω
∗

l (u′i−1)/ ∼l (follows from Lemma 14). Since (u′i−1 ≡m−(i−1) v′i−1), there
exists an [a]l-left decomposition of v′i−1 = (vi−1, v

′
i) such that ui−1 ≡m−(i−1) vi−1 and

u′i ≡m−i v′i.
Assign vk = v′k obtained at the end of iteration.

Note that k ≤ |M|. For an i < k, we have |alphabet(ui)| = |alphabet(vi)| < |alphabet(u)|
(from Lemma 14) and thereforem−i > |alphabet(ui)|×|M|. Since ui ≡m−i vi from induction
hypothesis, it follows γ(ui) = γ(vi), for all i < k. Therefore γ(u0 . . . ak) = γ(v0 . . . ak).

It remains to show that γ(u) ≥R γ(v). Depending on whether ak is empty or not, we
get the following cases.
1. If ak is non empty, then γ(u0a1 . . . akuk) R γ(u0a1 . . . ak) = γ(v0a1 . . . ak) ≥R γ(v). The

first condition follows from the fact that the sequence (u0a1 . . . uk) is an R decomposition,
and the second condition follows from the fact that γ(ui) = γ(vi) for all i < k.

2. If ak is empty, then (u0 . . . uk−1, uk) and (v0 . . . vk−1, vk) are both S-left decomposition
for an S ∈ Tω

∗

l (ui)/ ∼l. Hence there are prefixes u′k of uk and v′k of vk such that
u′k, v

′
k ∈ S−∞. From Lemma 11 we know that γ(u′k)Rγ(v′k). Therefore,

γ(u0a1 . . . akuk) R γ(u0a1 . . . u
′
k) R γ(v0a1 . . . v

′
k) ≥R γ(v0a1 . . . akvk) = γ(v).

We now have γ(u) ≥R γ(v). By a symmetric argument we get γ(v) ≥R γ(u) and therefore
γ(u) R γ(v). By L-R symmetry, γ(u) L γ(v) and since M is aperiodic γ(u) = γ(v). J

3.4 Logic to Algebra

In this subsection we show direction (2 ⇒ 4) of Theorem 8. We will show that, if L is
definable by an FO2(<) sentence, then L is recognizable by a ◦-DA. It suffices to show that
the game congruence ∼= satisfies the equations of ◦-DA.

We will show that for all numbers r > n the duplicator wins the an r round EF game on
the different equations. Our proof is a case analysis for the different equations.

The equation (xyz)ny(xyz)n = (xyz)n: The proof that duplicator wins the r round EF
game can be found in [26].
The equation (xn)ω(xn)ω∗ = xn: Follows, since FO satisfies this equation [6].
The equation {x1, . . . , xn}η = (x1 . . . xn)ω∗(x1 . . . xn)ω: In the first round, lets say Spoiler
pebbles some xi on one of the structures. Duplicator pebbles an xi on the other structure.
In the subsequent rounds, let Spolier pebble some xj on one of the structures. Duplicator
will pebble an xj on the other structure such that it preserves the ordering of the two
pebbles in both the structures. This is always possible, since both the structures are both
left and right infinite.
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4 Satisfiability

In this section we address the satisfiability problem of two-variable logic over countable linear
orderings. The rest of the section is devoted to the proof of the below theorem. Take note of
the fact that in this section Σ denotes a set of unary predicates (and not an alphabet). Our
models are words over the alphabet P(Σ).

I Theorem 15. The following problems are Nexptime-complete: Satisfiability of FO2(Σ, <)
over
1. arbitrary linear orderings,
2. countable linear orderings,
3. scattered linear orderings.

First we deal with the hardness part of the theorem. By downward Löwenheim-Skolem
theorem, every satisfiable first-order formula has a countable model, and therefore (1) reduces
to (2). Similary by Lemma 21 (given below), if a two-variable logic formula has a countable
model, then it has a scattered model. Therefore (2) reduces to (3). Secondly, satisfiability of
FO2(Σ) over arbitrary structures already is Nexptime-hard [9], and therefore (1), (2) and
(3) are Nexptime-hard.

Next we prove that (2) and (3) are in Nexptime. The idea is to show that for any
satisfiable formula there is a model of a particular form that admit at most exponentially
big (in the size of the formula) description.

Let ϕ be a FO2(Σ, <) formula. Using standard ideas we obtain a formula ϕ′ ∈ FO2(Σ′, <)
in Scott normal form, i.e.

ϕ′ = ∀x∀y ψ(x, y) ∧
∧
i

∀x∃y χi(x, y) , (1)

where Σ′ ⊇ Σ, |Σ′| = |Σ| + O(|ϕ|), |ϕ′| = O(|ϕ|), ψ(x, y) and χi(x, y) are quantifier free,
such that ϕ and ϕ′ are equisatisfiable (one is satisfiable if and only if the other is satisfiable).
More precisely, the sets of models of ϕ and ϕ′ are isomorphic upto the erasure of the unary
predicates Σ′ \ Σ.

We introduce some notation. Given a set of unary predicates P , we define a unary type
over P to be a maximal conjunction of literals (i.e. U(x) or ¬U(x) where U is a unary
predicate in P ) over the same variable that is satisfiable. When the set P is clear from the
context we just use types to refer to the unary types over P . We write tp(P ) to denote the
types over the predicates P . Each position of a ◦-word satisfies exactly one type, called the
type of the position. Models of ϕ′ are ◦-words over the alphabet tp(Σ′).

I Lemma 16. Each formula ∀x∃y χi(x, y) is equivalent to a formula

∧
j

∀x

(
αj(x)→ ∃y

(
O(x, y) ∧

∨
k

βjk(y)
))

(2)

where αj , βjk are types and O(x, y) is a disjunction over the set {x < y, x = y, x > y}.

Proof. By writing each χi(x, y) in disjunctive normal form, the formula ∀x∃y χi(x, y) is
equivalent to a formula of the form

∀x∃y
∨
l

αl(x) ∧Ol(x, y) ∧ βl(y) (3)
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where αl(x) and βl(y) are a conjunctions of literals over the variable x and y respectively
and Ol(x, y) is a disjunction over the set O = {x < y, x = y, x > y}. By adding literals to
each αl and βl, it can be seen that formula 3 is equivalent to

∀x∃y
∨
j

(
αj(x) ∧Oj(x, y) ∧

∨
k

βjk(y)
)

(4)

where each αi and each βij are unary types and Oj(x, y) is a disjunction over O. Moreover,
since each position satisfies exactly one αj the Formula 4 is equivalent to

∀x∃y
∧
j

(
αj(x)→ Oj(x, y) ∧

∨
k

βjk(y)
)
. (5)

Finally we observe that this is equivalent to

∧
j

∀x

(
αj(x)→ ∃y

(
Oj(x, y) ∧

∨
k

βjk(y)
))

. (6)

J

Next we show that given any formula in Scott normal form it has models of a particular
form. Before that we need some elementary lemmas about linear orderings.

I Lemma 17. If X1, . . . , Xn ⊆ Z are right-open sets such that for each 1 ≤ i < n, Xi+1
contains an upperbound of Xi, then there exist nonempty suffixes X ′1, . . . , X ′n of X1, . . . , Xn

respectively such that X ′1 < · · · < X ′n.

Proof. Assume that X1, . . . , Xn are right-open subsets of Z and for each 1 ≤ i < n, Xi+1
contains an upperbound of Xi. Choose x2 ∈ X2, . . . , xn ∈ Xn such that for each 2 ≤ i ≤ n,
the element xi is an upperbound of Xi−1. For 2 ≤ i ≤ n, let X ′i = {y ∈ Xi : y > xi}. Then,
the sets X1 < X ′2 < · · · < X ′n are nonempty suffixes of X1, . . . , Xn respectively. J

Dualy the following also holds.

I Lemma 18. If X1, . . . , Xn ⊆ Z are left-open sets such that for each 1 ≤ i < n, Xi

contains a lowerbound of Xi+1, then there exist nonempty prefixes X ′1, . . . , X ′n of X1, . . . , Xn

respectively such that X ′1 < · · · < X ′n.

I Lemma 19. If X̄ = X1 < · · · < Xm is a sequence of left-open sets and Ȳ = Y1 < · · · < Yn
is a sequence of right-open sets then there exist X ′1 < · · · < X ′m and Y ′1 < · · · < Y ′n such that
1. for each 1 ≤ i ≤ m, X ′i is a nonempty prefix of Xi,
2. for each 1 ≤ i ≤ n, Y ′i is a nonempty suffix of Yi, and
3. for each pair 1 ≤ i ≤ m, 1 ≤ j ≤ n, either X ′i < Y ′j or Y ′j < X ′i, i.e. the set
{X ′1, . . . , X ′m, Y ′1 , . . . , Y ′n} is linearly ordered by the relation < .

Proof. We prove the claim by induction on the set of all pairs (X̄ = X1 < · · · < Xm, Ȳ =
Y1 < · · · < Yn) of sequences of nonempty sets — such that Xi’s are left-open, and Y i’s
are right-open — ordered pointwise by the prefix ordering on sequences. The induction
base is the degenerate case when both X̄ and Ȳ are empty sequences, and the claim holds
vacuously. For the inductive step assume that the claim holds (X̄ = X1 < · · · < Xm, Ȳ =
Y1 < · · · < Yn). We have two cases to consider, namely the pairs (X1 < · · · < Xm < X, Ȳ )
and (X̄, Y1 < · · · < Yn < Y ) where X and Y are some nonempty subsets of Z such that
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X is left-open and Y is right-open. Next we prove the claim for both cases. By induction
hypothesis, there exist sequences X̄ ′ = X ′1 < · · · < X ′m and Ȳ ′ = Y ′1 < · · · < Y ′n that satisfy
conditions (1), (2) and (3).

Consider the pair (X1 < · · · < Xm < X, Ȳ ). If X does not intersect with any of the sets
Y ′1 , . . . , Y

′
n, then the sequences X̄ ′1 < · · · < X ′m < X and Ȳ ′ satisfies the claim. Otherwise,

let 1 ≤ j ≤ n be the smallest index such that Y ′j ∩X 6= ∅. Choose an z ∈ Y ′j ∩X and define
X ′ = {x ∈ X : x < z} and Y ′′j = {y ∈ Y ′j : y > z}. We verify that the sequences

X ′1 < · · · < X ′m < X ′ and Y ′1 < · · · < Y ′j−1 < Y ′′j < Y ′j+1 < · · · < Y ′n

satisfy the claim. Clearly X ′ < Y ′′j . Also, for each 1 ≤ i < j, Y ′j < X ′ and for each j < i ≤ m,
X ′ < Y ′i . All other cases follow from the induction hypothesis. Thus the claim is verified.

Next consider the pair (X̄, Y1 < · · · < Yn < Y ). If Y does not intersect with any of the
X ′i then X̄ ′ and Y ′1 < · · · < Y ′n < Y satisfies the claim. Otherwise we choose the largest index
1 ≤ i ≤ n such that X ′i ∩Y is nonempty and choose an z ∈ X ′i ∩Y . Let Y ′ = {y ∈ Y : y > z}
and X ′′j = {x ∈ X ′j : x < z}. We claim that the sequences

X ′1 < · · · < X ′j−1 < X ′′j < X ′j+1 < · · · < X ′m and Y ′1 < · · · < Y ′n < Y ′

satisfy the claim. By definition, X ′′j < Y ′. For each 1 ≤ j < i, X ′j < Y ′, and for each
i < j ≤ n, Y ′ < X ′j . Rest of the cases are satisfied by the induction hypothesis. Thus the
claim is verified. J

I Lemma 20. If X ⊆ Z is finite and Y ⊆ Z is right-open (resp. left-open) then there
exist disjoints subsets X1, X2 of X and a nonempty suffix (resp. prefix) Y ′ of Y such that
X1 < Y ′ < X2 and X = X1 ∪X2.

Proof. The claims are dual and we treat only one case. Assume X ⊆ Z is finite and Y ⊆ Z
is right-open. If Y < X then ∅ < Y < X and the claim follows. Otherwise let x ∈ X

be the maximal element in X for which there is some y ∈ Y such that x < y. We take
X1 = {y ∈ X : y ≤ x} and observe that X1 < Y ′ = {y ∈ Y : y > x} < X \X1 and the set
Y ′ is a nonempty suffix of Y . J

Next we prove that formulas ϕ′ in Scott normal form possess particular kind of models.

I Lemma 21. If ϕ′ is satisfiable, then it has a model of the form uλ1
1 · · ·uλn

n where n ≥ 1 is
a natural number, for each 1 ≤ i ≤ n, ui is a finite word over the alphabet tp(Σ′) and λi is
in {1, ω, ω∗} , such that
1. every type occurs at most once in each ui, and
2. every type occurs in at most two ui’s.

Proof. Assume ϕ′ is satisfiable and let u be a ◦-word over the alphabet tp(Σ′) that satisfies
it. Let T be the set of all types occurring in u. For a type α in T , let P (α) denote the set of
all positions in u labelled with α. Let T 1

r ⊆ T be the set of all types α such that P (α) has a
maximal element. Further more let Tωr be the set T \ T 1

r .
We define a total preorder .r over the set of types Tωr as follows.

α .r β if each α-position in u has a β-position to its right.

We verify that .r is indeed a total preorder. Since for each type α in Tωr the set P (α)
does not have a maximum, clearly α .r α. Next, let α, β, γ ∈ Tωr be such that α .r β
and β .r γ. By definition of .r, every α-position has a β-position to the right, which in
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turn has a γ-position to its right. Hence α .r γ. It only remains to show that .r is total.
Assume α 6.r β. By definition, there is an α-position i that has no β-position to its right.
Hence all β-positions lie to the left of i, and therefore every β-position has an α to its right,
and therefore β .r α. We write ∼r to denote the equivalence relation associated with the
preorder .r. For a type α in Tωr we let [α]r ⊆ Tωr denote the equivalence class of α with
respect to the total preorder .r, i.e. [α]r = {β ∈ Tωr : β ∼r α}. We write <r to denote the
total order on {[α]r : α ∈ Tωr }.

Let [α1]r <r · · · <r [αh]r be the classes of the equivalence ∼r. For a class [αi]r, we define
P ([αi]r) to be the set ∪β∼rαi,β∈Tω

r
P (β). By definition of the preorder .r, each P ([αi]r)

has an upperbound in P ([αi+1]r). Moreover, none of the P ([αi]r) has a maximal element.
Applying the Lemma 17 to the sets P ([α1]r), . . . , P ([αh]r) we obtain their respective suffixes
Q[α1]r

, . . . , Q[αh]r
guaranteed by the lemma such that Q[α1]r

< · · · < Q[αh]r
.

Next we repeat the above construction for the opposite direction. Let T 1
l ⊆ T is the

set of types α such that P (α) has a minimum and let Tω∗l = T \ T 1
l . The dual relation .l

defined as

β .l α if each α-position in u has a β-position to its left

is also a total preorder. The corresponding equivalence relation and strict order relation
are denoted as ∼l and <l. Let [β1]l <l · · · <l [βk]l be the classes of the equivalence ∼l. As
before we let P ([βi]l) to be the set ∪α∼lβi,α∈Tω∗

l
P (α). By definition of .l, each P ([βi]l)

contains a lower bound of P ([βi+1]l). Also, none of P ([βi]l) has a minimum. Therefore
applying Lemma 18 to the sets P ([β1]l), . . . , P ([βk]l) we obtain prefixes Q[β1]l

, . . . , Q[βk]l
of

P ([β1]l), . . . , P ([βk]l) such that Q[β1]l
< · · · < Q[βk]l

.
Next we apply the Lemma 19 to the sequences Q[α1]r

< · · · < Q[αh]r
, Q[β1]l

< · · · < Q[βk]l

and obtain suffixes Q′[α1]r
< · · · < Q′[αh]r

and prefixes Q′[β1]l
< · · · < Q′[βk]l

as in the statement
of the lemma.

Let F be the set of positions containing maximal occurrences of types in T 1
r and minimal

occurrences of types in T 1
l , i.e. F =

⋃
α∈T 1

r
{max(P (α))}∪

⋃
α∈T 1

l
{min(P (α))}. By applying

the Lemma 20 with the finite set F and each of the set Q′[α1]r
, . . . , Q′[αh]r

(which don’t
have maximums) we obtain their respective suffixes Q′′[α1]r

, . . . , Q′′[αh]r
such that for each

Q′′[αi] there exists X,Y ⊆ F such that X < Q′′[αi]r
< Y and X ∪ Y = F . Similarly again

applying the Lemma 20 with H and each of the set Q′[β1]l
, . . . , Q′[βk]l

(which don’t have
minimums) we obtain their respective prefixes Q′′[β1]r

, . . . , Q′′[βk]l
such that for each Q′′[βi]

there exists X,Y ⊆ F such that X < Q′′[βi]l
< Y and X ∪ Y = F . Therefore we conclude

that there exists nonempty disjoint subsets F1, . . . , Ft ⊆ F such that F = ∪ti=1Ft and
the set {Q′′[α1]r

, . . . , Q′′[αh]r
, Q′′[β1]l

, · · · , Q′′[βk]l
, F1, . . . , Ft} is linearly ordered by the relation

<. Finally from each set Q′′[αi]r
where [αi]r = {α1, . . . , αk} we choose a countable set of

positions I[αi]r
= {i1 < i2 < · · · } such that the set I[αi]r

constitutes the ω-word (α1 · · ·αk)ω.
Similarly, from each set Q′′[βi]l

where [βi]r = {β1, . . . , βk} we choose a countable set of
positions I[βi]l

= {i1 > i2 > · · · } such that the set I[βi]l
constitutes the ω∗-word (β1 · · ·βk)ω∗ .

We define u′ to be the subword of u (our initial model) given by the set of positions

I =
h⋃
i=1

I[αi]r
∪

k⋃
i=1

I[βi]l
∪

t⋃
i=1

Fi

and show that u′ satisfies the conditions described by the Lemma. By definition of the sets
I[αi]r

, 1 ≤ i ≤ h, and I[βi]l
, 1 ≤ j ≤ k, the ◦-word u′ is of the form uλ1

1 · · ·uλn
n where ui
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are finite words over the alphabet T and λi are in {1, ω, ω∗}. Conditions (1) and (2) of the
lemma simply follows by construction.

It only remains to show that u′ is also a model of the formula. Firstly we observe that
since u′ is a sub-◦-word of u it satisfy the formula ∀x∀y ψ(x, y) from the Equation 1. Next
we need to show that u′ satisfies each of the formula ζ = ∀x∃y χi(x, y). By Lemma 16 ζ is
equivalent to a formula of the form

∧
j ∀x (αj(x)→ ∃y (Oj(x, y) ∧ (∨jβjk(y))) where αj , βjk

are types and Oj(x, y) is a disjunction over {x < y, x = y, x > y}. Therefore, to show that
u′ satisfies the formula ζ it is enough to show that if an α-position in I has some β-position
y to the right (resp. left ), i.e. y > x, in u, then it has a β-position to the right (resp. left) in
u′ also, i.e there is some y′ in I such that y′ > x. We only consider the case when β occurs
to the right. We do a case analysis. If P (β) has a maximum element then that is a witness
for x, and it is present in u′. Otherwise the set P (β) is right-open and the set I[β]r

contains
a suffix of P ([β]) by construction. Hence there is β to the right of α. J

A model of the form u = uλ1
1 · · ·uλn

n is finitely represented as a sequence of pairs
(u1, λ1) · · · (un, λn) . Lemma 21 guarantees that for every satisfiable formula ϕ′ there is a
representation of size at most 3 · tp(Σ) ≤ 3 · 2|ϕ′|.

I Lemma 22. Given a sequence of pairs (u1, λ1) · · · (un, λn) and a formula ϕ′ checking if
the ◦-word uλ1

1 · · ·uλn
n satisfies the formula ϕ in Scott normal form is in Ptime.

Proof. First we prove a small claim. Let A be an alphabet and let v be a finite word over A.
Let v1, v2, v3, v

′
1, v
′
2, . . . be copies of the word v. There is an obvious correspondence between

positions of any two copies, that maps the ith position of one copy to the ith position of
the other copy. Let u, u′, w, w′ ∈ A◦ be words such that alphabet(u) = alphabet(u′) and
alphabet(w) = alphabet(w′). We define B and C to be the words

B = u · v1 · v2 · v3 · w C = u′ · v′1 · v′2 · · · · w′ .

We claim that (?) for positions x in B and y in C, the pairs B, x ∼=1 C, y whenever (1) x and
y are corresponding positions from v1 and v′1 respectively, or (2) x and y are corresponding
positions from copies v2 and v′j , j ≥ 2 respectively. To prove the claim observe that starting
from any configuration where x and y are selected in the words B and C, the duplicator
has a winning strategy in the 1-round game, whenever x and y satisfies one of the previous
conditions: whenever the spoiler picks an a-position to the left (resp. right) she also picks an
a-position to the left (resp. right). This is always possible since the letters on the left (as
well as right) of x and y are the same. Therefore B, x ≡1 C, y, i.e. they satisfy the same first
order formulas with a free variable with quantifier rank at most 1. Similarly the dual claim
also holds: If B and C are respectively the words

B = u · v3 · v2 · v1 · w C = u′ · · · · v′2 · v′1 · w′ .

then for positions x in B and y in C, the pairs B, x ∼=1 C, y whenever Conditions (1) and (2)
are met.

Next we prove the Lemma. Assume that we are given a sequence of pairs ū =
(u1, λ1) · · · (un, λn) and a formula ϕ = ∀x∀y ψ(x, y) ∧

∧
i ∀x∃yχi(x, y). Let u ∈ A◦ be

the word uλ1
1 · · ·uλn

n and let u′ be the finite word uλ
′
1

1 · · ·u
λ′n
n where λ′i is 1 if λi is 1, and 3

otherwise. The subset of positions of u′ that correspond to the case λi = 1 is called finitary
positions. The word u satisfies the formula ϕ if every position of u satisfies the set of formulas
S = {∀y ψ(x, y), (∃y χi(x, y))i}. By Claim (?) and its dual, every position in a factor of u
of the form uωi or uω∗i is ≡1-equivalent to a position in u3

i , namely the positions in the first
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two copies of ui, or the last two copies of ui respectively. Therefore it is enough to verify
the set S on such positions, as well as on the finitary positions. This can be done in time
O
(
|ϕ|2 · |ū|2

)
.

J

To complete the proof of the Theorem 15 we describe a Nexptime algorithm for FO2

formulas over countable linear orders: The algorithm converts the input formula to Scott
normal form and guesses an atmost exponentially large representation of a model of the form
described by Lemma 21 and checks that it is indeed a model by Lemma 22.

5 Conclusion

In this paper we characterised first-order logic with two variables over countable linear
orderings. It is equivalent to a fragment of temporal logic and is characterised by a subclass
of ◦-monoids, called ◦-DA. The class ◦-DA is the class of ◦-monoids whose regular J classes
are sub ◦-monoids. We also proved an alternate characterisation of this class using equations
and this yields decidability of membership in this class. Next we considered the satisfiability
problem for FO2 over arbitrary, countable and scattered linear orderings and showed that all
the problems are Nexptime-complete.

Finally we note that FO2 with order and successor relation (position j > i is the successor
of position i if there is no position between them) is strictly more powerful that FO2 with only
the order relation. To see this it is enough to note that aω and aωaω are indistinguishable
by any formula in the latter class, while there is a formula, namely “there is exactly one
position without a predecessor” that separates them. We leave as future work the question
of extending the characterisation in the present paper to handle the successor relation.
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