Algebraic Characterizations and Block Product Decompositions for First Order Logic and its Infinitary Quantifier Extensions over Countable Words

Bharat Adsul^a, Saptarshi Sarkar^a, A. V. Sreejith^{b,*}

^aIndian Institute of Technology Bombay, Powai, Mumbai, 400076, Maharashtra, India ^bIndian Institute of Technology Goa, Farmagudi, Ponda, 403401, Goa, India

Abstract

We contribute to the refined understanding of language-logic-algebra interplay in a recent algebraic framework over countable words. Algebraic characterizations of the one variable fragment of FO as well as the boolean closure of the existential fragment of FO are established. We develop a seamless integration of the block product operation in the countable setting, and generalize well-known decompositional characterizations of FO and its two variable fragment. We propose an extension of FO admitting infinitary quantifiers to reason about inherent infinitary properties of countable words, and obtain a natural hierarchical block-product based characterization of this extension. Properties expressible in this extension can be simultaneously expressed in the classical logical systems such as WMSO and FO[cut]. We also rule out the possibility of a finite-basis for a block-product based characterization of these logical systems. Finally, we report algebraic characterizations of one variable fragments of the hierarchies of the new extension.

Keywords: linear orderings, first-order logic, countable words, algebraic structures, formal language theory, block product, Krohn-Rhodes theorem

Preprint submitted to Journal of Computer and System Sciences May 24, 2024

[∗]Corresponding author

Email addresses: adsul@cse.iitb.ac.in (Bharat Adsul),

sreejithav@iitgoa.ac.in (A. V. Sreejith)

 $URL:$ https://www.iitgoa.ac.in/~sreejithav/ $(A. V.$ Sreejith)

1. Introduction

 Monadic Second-Order (MSO) logic is a natural logic to express prop-3 erties of words. Over finite words, Büchi-Elgot-Trakhtenbrot theorem [\[1\]](#page-48-0) 4 establishes that languages definable in MSO are precisely *regular* languages. Regular languages admit a variety of well-known characterizations [\[1,](#page-48-0) [2,](#page-48-1) [3\]](#page-48-2) such as describability by regular expressions, acceptance by finite state au- τ tomata, or recognition by finite monoids. The seminal results of Büchi [\[4\]](#page-48-3), Rabin [\[5\]](#page-48-4), Shelah [\[6\]](#page-48-5), and Carton et.al [\[7\]](#page-48-6) show that this close relationship between logical expressiveness and language recognizability remains true not ¹⁰ just over finite linear orderings but also over infinite words like ω -words and countable words. The effective translation between MSO and an au- tomata/algebra model gives decidability of MSO over these linear orderings. The classical result of Shelah (also in [\[6\]](#page-48-5)) shows that over reals (uncountable orderings) MSO is undecidable. In this paper, we focus on analysing the expressive power and decidability of various logics over countable words.

 One can effectively associate, to a regular language of finite words, its syntactic monoid. This canonical algebraic structure carries a rich amount of information about the corresponding language. Its role is highlighted by μ ¹⁹ the classical Schützenberger-McNaughton-Papert theorem [\[8,](#page-48-7) [9\]](#page-48-8) which shows that aperiodicity property of the syntactic monoid coincides with describa- bility using star-free expressions as well as definability in First-Order (FO) $_{22}$ logic. Building on the work of Shelah [\[6\]](#page-48-5), Carton et. al. [\[7\]](#page-48-6) proposed an algebraic model, ⊛-monoid, that recognize exactly those languages defin- able by MSO over countable linear orderings. This framework extends the language-logic-algebra interplay to the setting of countable words. The alge- braic approach paves the way for equational characterizations of logics and hence decidability of the problem of definability in the said logics. Building on the work in [\[7\]](#page-48-6), algebraic characterization for variety of sub-logics of MSO over countable words is carried out in [\[10\]](#page-49-0). In particular, this work provides ³⁰ algebraic *equational* (hence decidable) characterizations of FO, FO cut – an 31 extension of FO that allows quantification over *Dedekind-cuts* and WMSO – an extension of FO that allows quantification over finite sets. A decidable algebraic equational characterization for the two variable fragment of FO $_{34}$ (denoted by FO²) over countable words is presented in [\[11\]](#page-49-1).

 We begin our explorations in Section [3](#page-10-0) with the small fragments of FO over countable words. We provide an equational characterization (Theo-rem [3\)](#page-12-0) for $FO¹$ – the one variable fragment of FO. Coupled with the results

³⁸ in [\[11\]](#page-49-1) and [\[10\]](#page-49-0) on the equational characterization of FO^2 and $FO = FO^3$ (see [\[12\]](#page-49-2)), we have complete equational characterizations of FO fragments defined by the number of permissible variables. Our next result in the same sec- tion (Theorem [4\)](#page-15-0) extends Simon's theorem on piecewise testable languages to countable words and provides a natural algebraic characterization of the Boolean closure of the existential-fragment of FO.

 It turns out that the algebraic landscape of small fragments of FO over countable words parallels very closely the same landscape over finite words. This can be attributed to the limited expressive power of FO over countable words. For instance, B`es and Carton [\[13\]](#page-49-3) showed that the seemingly natural 'finiteness' property (that the set of all positions is a finite set) of countable words can not be expressed in FO!

⁵⁰ In Section [6](#page-32-0) we extend FO with new *infinitary* quantifiers. The main purpose of our new quantifiers is to naturally allow expression of infinitary features that are inherent in the countable setting. An example formula s using such an infinitary quantifier is: $\exists^{\infty_1} x \ a(x) \land \neg \exists^{\infty_1} x \ b(x)$. In its natural semantics, this formula with one variable asserts that there are infinitely many a-labelled positions and only finitely many b-labelled positions. We 56 propose an extension of FO called FO[∞] that supports first-order infinitary $_{57}$ quantifiers of the form $\exists^{\infty_k} x$ to talk about existence of higher-level infinitely 58 (more accurately, "Infinitary rank" k) many witnesses x. We organize $FO[\infty]$ in a natural hierarchy based on the maximum allowed infinitary-level of the ω quantifiers. We prove that FO[∞] properties can be expressed simultaneously (Theorem [8\)](#page-35-0) in FO[cut] as well as WMSO.

 The other main results of this work are decomposition theorems in the countable setting. The seminal result of Krohn-Rhodes decomposition the- $\frac{64}{14}$ orem [\[14\]](#page-49-4) shows that any finite monoid can be built from groups and the $65 \mod U_1$ (a unique 2-element monoid) using a block-product construction [\[15\]](#page-49-5). There are other prominent examples in this line of work. A charac- σ terization of FO-logic (resp. FO², the two-variable fragment) in terms of δ ⁸⁸ strongly (resp. weakly) iterated block-products of copies of U_1 is presented 69 in [\[15\]](#page-49-5) (resp. [\[16\]](#page-49-6)).

 Motivated by the decisive role played by block products in the standard π settings [\[15,](#page-49-5) [3\]](#page-48-2), we introduce block products in the countable setting in Sec- tion [4.](#page-18-0) The block product construction associates to a pair of ⊛-monoids 73 (more precisely, \oplus -semigroups) (M, N) a new \otimes -monoid (more precisely, \oplus - $_{74}$ semigroup) $M\square N$. From a formal-language theoretic viewpoint, the impor-tance of the block product construction is best described by the accompa nying block product principle (Theorem [5\)](#page-27-0). Roughly speaking the block π product principle says that evaluating a *countable* word u in $M\Box N$ can be achieved by the following two-stage process:

 τ_1 1. evaluate the word u in M and label every position x of u with the ⁸⁰ additional information about evaluations of $u_{< x}$ and $u_{> x}$ in M where ⁸¹ u_{$\lt x$} and u_{$\gt x$} are such that $u = u_{\lt x}u[x]u_{\gt x}$ (that is, $u_{\lt x}$ and $u_{\gt x}$ are $\text{the left and right factors/ contexts at position } x);$

 \mathcal{B} 2. evaluate this extended word (with the additional information) in N.

⁸⁴ Said differently, M 'operates' on u as usual; while when N 'operates' on u, \mathcal{L}_{ss} it has access, at *every* position, to evaluations of M on left-right contexts at that position. Our block product construction and the accompanying block ⁸⁷ product principle extend naturally the results from finite words to countable words. Furthermore, we give decompositional characterizations of FO and $SO²$ over countable words (Theorems [7](#page-32-1) and [6](#page-31-0) respectively) - again natural extensions of analogous results over finite words.

 In Section [7,](#page-37-0) we extend the block-product based characterization of FO 92 to $\text{FO}[\infty]$ (Theorem [10\)](#page-41-0). Towards this, we identify an appropriate simple family of ⊛-algebra and show that this family (in fact, its initial fragments) serve as a basis in our hierarchical block-product based characterization. ⁹⁵ We also show that the language-logic-algebra connection for $FO¹$ admits novel generalizations to the one variable fragments of the new hierarchical extensions.

 In Section [8,](#page-43-0) we present a 'no finite block-product basis' theorem (Theo- rem [12\)](#page-47-0) for FO[∞], FO[cut], and the semantic class FO[cut] ∩ WMSO. The theorem states that no finite set of ⊛-algebras closed under block products recognize all languages definable in these logics. This is in contrast with FO where the unique 2-element ⊛-algebra is a basis for a block-product based characterization. To prove the above result we identify a natural combinato- rial measure called gap-nesting-length that is shown to be well-behaved with respect to the block product operation.

 The rest of the article is organized as follows. Section [2](#page-4-0) recalls basic no- tions about countable words and summarizes the necessary algebraic back- ground from the framework [\[7\]](#page-48-6). Section [3](#page-10-0) deals with the small fragments $_{109}$ of FO: FO¹ and the Boolean closure of the existential fragment of FO. In Section [4](#page-18-0) and Section [5](#page-29-0) we develop the algebraic apparatus of block product $_{111}$ operation and weakly iterated block-product based characterization of FO². $_{112}$ Section [6](#page-32-0) is devoted to FO[∞] and its relation with FO[cut] and WMSO and in Section [7,](#page-37-0) we provide the relevant characterizations. Section [8](#page-43-0) is con- cerned with the 'no finite block-product basis' theorems. We finally conclude in Section [9.](#page-47-1)

 The results presented in Sections [3,](#page-10-0) [6,](#page-32-0) [7,](#page-37-0) and [8](#page-43-0) are an elaboration and $_{117}$ extension of the work that appeared in FCT 2021 [\[17\]](#page-50-0). In order to make this article self-contained, we have also included relevant work of the authors (Sections [4,](#page-18-0) and [5\)](#page-29-0) that was presented in LICS 2019 [\[18\]](#page-50-1). This paper includes the full proofs of the results, many of which are not present in the conference proceedings.

¹²² 2. Preliminaries

¹²³ In this section, we briefly present some mathematical preliminaries of ¹²⁴ countable linear orderings, and recall the algebraic framework developed $_{125}$ in |7|.

126 A countable linear ordering (or simply ordering) $\alpha = (X, \langle)$ is a countable 127 set X equipped with a total order \langle . An ordering $\beta = (Y, \langle)$ is called a 128 subordering of α if $Y \subseteq X$ and the order on Y is induced from that on 129 X. We denote by ω, ω^* and η the orderings $(\mathbb{N}, <), (-\mathbb{N}, <)$ and $(\mathbb{Q}, <)$ 130 respectively. A subordering (I, \leq) of α is called *convex* if for any $x \leq y \in I$, 131 and $z \in \alpha$, $x < z < y$ implies $z \in I$. A subordering (I, \leq) of α is *dense* in α 132 if for any two points $x < y \in \alpha$, there exists $z \in I$ such that $x < z < y$. For 133 example, (\mathbb{Q}, \lt) is dense in (\mathbb{R}, \lt) and (\mathbb{R}, \lt) is dense in itself. If a linear ¹³⁴ ordering is dense in itself, we simply call it dense. A linear ordering is called ¹³⁵ scattered if all its dense suborderings are singleton or empty. The *generalized* ¹³⁶ sum of countably many (disjoint) linear orderings $\beta_i = (X_i, \langle i \rangle)$ which are 137 themselves indexed by some linear ordering $\alpha = (Y, \langle)$ is the linear ordering ¹³⁸ $\sum_{i\in\alpha}\beta_i = (Z, \langle')$ where $Z = \bigcup_{i\in\alpha}X_i$ and for any two points $x, y \in Z$, $x \leq' y$ ¹³⁹ if either $x \leq_i y$ or $x \in X_i$, $y \in X_j$ and $i \leq j$. The book [\[19\]](#page-50-2) contains an ¹⁴⁰ in-depth study of linear orderings.

 141 A countable word w is a labelled countable linear ordering. More formally, 142 given a finite alphabet Σ and a countable linear ordering α , a countable word 143 (or simply word) w is a map $w : \alpha \to \Sigma$. We call α the *domain* of w, denoted 144 dom(w). For a word w, we say a point or position x in the word to refer ¹⁴⁵ to an element of its domain. The notation $w[x]$ denotes the letter at the ¹⁴⁶ xth position in the word w. A subword is a restriction of a word w to some

¹⁴⁷ induced subordering I of its domain, and is denoted by w_I . If I is convex, 148 then w_I is called a *factor*.

¹⁴⁹ For two countable words u and v, we will denote by uv the countable word 150 formed by the concatenation of u and v. The *generalized concatenation* of a ¹⁵¹ countable sequence of words $(u_i)_{i \in \alpha}$ indexed by a linear countable ordering ¹⁵² α is the unique word $\prod_{i \in \alpha} u_i = v$ where $\text{dom}(v) = \sum_{i \in \alpha} \text{dom}(u_i)$, and $v[x] =$ ¹⁵³ $u_i[x]$ if $x \in \text{dom}(u_i)$.

154 The following countable words are of special interest. The notation ε 155 stands for the *empty word* (the word over the empty domain). The ω -word, ¹⁵⁶ a^{ω} denotes the word over the domain $(N, <)$ such that every position is ¹⁵⁷ mapped to the letter a. Similarly, the ω^* -word a^{ω^*} denotes the word over 158 the domain $(-\mathbb{N}, <)$ where every position is mapped to letter a. A perfect ¹⁵⁹ *shuffle* over a nonempty set $P \subseteq \Sigma$ of letters, denoted by P^{η} , is the word w 160 over domain (\mathbb{Q}, \leq) such that $w[x] \in P$ for all positions x in dom(w) and for 161 any $a \in P$, any $x \leq y$ in dom(w), there exists $z \in \text{dom}(w)$ such that $w[z] = a$ 162 and $x < z < y$. This is a unique word up to isomorphism [\[19\]](#page-50-2).

163 Example 1. The word $(a^{\omega})^{\omega}$ denotes the countable word formed by generalized concatenation of ω many words a^{ω} . Similarly, for any countable word ¹⁶⁵ u, the word u^{ω^*} denotes the countable word formed by generalized concatenot isomorphism the words ω^* many words u. Note that upto isomorphism the words $(a^{\eta})^{\omega}$, ¹⁶⁷ $(a^{\eta})^{\omega^*}$, and $(a^{\eta})^{\eta}$, is the same word.

For an alphabet Σ , the set of all countable words is denoted by Σ^* and the set of all countable words over non-empty domain is denoted by Σ^{\oplus} . 170 We now recall the algebraic framework from [\[7\]](#page-48-6). A \oplus -semigroup (S, π) ¹⁷¹ consists of a set S with an operation $\pi : S^{\oplus} \to S$ such that, $\pi(a) = a$ 172 for all $a \in S$ and π satisfies the *generalized associativity property* – that is ¹⁷³ $\pi\big(\prod_{i\in\alpha}u_i\big)=\pi\big(\prod_{i\in\alpha}\pi(u_i)\big)$ for every countable linear ordering α . If the generalized associativity holds with $\pi : S^* \to S$, then (S, π) is called a \circledast -175 monoid. It is easy to see that, in this case, the element $1 = \pi(\varepsilon)$ of S is the 176 neutral element of S. The defining property of a neutral element 1 is that: ¹⁷⁷ for every word $u \in S^{\oplus}$, if the word $u|_{\neq 1}$ is the subword obtained by removing 178 every occurence of the element 1 and $u|_{\neq 1}$ is non-empty, then $\pi(u) = \pi(u|_{\neq 1})$. 179 It is easy to see that if a given \oplus -semigroup (S,π) does not admit a 180 neutral element, we can construct a ⊛-monoid on the set $S^1 = S \cup 1$ by ¹⁸¹ introducing an *additional* element 1 and by extending π suitably to S^{1} [®] so 182 that 1 becomes the neutral element. On the other hand, if \oplus -semigroup 183 contains a neutral element, say $1 \in S$, then (S,π) is already a ⊛-monoid ¹⁸⁴ with $\pi(\varepsilon) = 1$. In this case, we simply set $S^1 = S$.

185 A ⊕-semigroup or \mathcal{F} -monoid (S,π) is called finite if S is finite. For a set 186 Σ , (Σ^{\oplus}, Π) (resp. $(\Sigma^{\circledast}, \Pi)$) is the free \oplus -semigroup (resp. free \otimes -monoid) 187 generated by Σ .

Example 2. $U_1 = (\{1, 0\}, \pi)$ is a finite ⊛-monoid where π is defined for all $u \in \{1,0\}^*$ as:

$$
\pi(u) = \begin{cases} 1 & \text{if } u \in \{1\}^{\circledast} \\ 0 & \text{otherwise} \end{cases}
$$

188 Here π satisfies the generalized associativity property because no matter 189 which factorization of u we take, the output of π applied directly on u equals 190 the output of π applied in two stages — first on the factors, and then on the ¹⁹¹ countable word formed by the outputs of the previous stage. Let us consider 192 the word $u = (011)^\omega$. We have $\pi(u) = 0$ since u contains 0. If we consider the 193 factorization $u = \prod_{i \in \omega}(011)$, then note that $\pi(\prod_{i \in \omega}(\pi(011)) = \pi(\prod_{i \in \omega}0) =$ 194 0 which indeed equals $\pi(u)$.

195 Let (S,π) be a \oplus -semigroup. Note that even if S is finite, π need not ¹⁹⁶ be finitely presentable and hence not suitable for algorithmic purposes. For-197 tunately, it is possible to capture π through finitely presentable operators. ¹⁹⁸ This is precisely the reason for introducing ⊕-algebras.

199 A \oplus -algebra $(S, \cdot, \tau, \tau^*, \kappa)$ consists of a set S with $\cdot : S^2 \to S, \tau : S \to$ 200 $S, \tau^* : S \to S, \kappa : 2^S \setminus \{\emptyset\} \to S$ such that (with infix notation for \cdot and ²⁰¹ superscript notation for τ, τ^*, κ)

$$
\text{202} \quad \text{A-1} \ (S, \cdot) \ \text{is a semigroup.}
$$

$$
\text{203} \quad \text{A-2} \ (a \cdot b)^{\tau} = a \cdot (b \cdot a)^{\tau} \text{ and } (a^n)^{\tau} = a^{\tau} \text{ for } a, b \in S \text{ and } n > 0.
$$

$$
A-3 (b \cdot a)^{\tau^*} = (a \cdot b)^{\tau^*} \cdot a \text{ and } (a^n)^{\tau^*} = a^{\tau^*} \text{ for } a, b \in S \text{ and } n > 0.
$$

205 A-4 For every non-empty subset P of S, every element c in P, every subset 206 Q of P, and every non-empty subset R of $\{P^{\kappa}, a \cdot P^{\kappa}, P^{\kappa} \cdot b, a \cdot P^{\kappa} \cdot b \mid a, b \in$ 207 P , we have $P^{\kappa} = P^{\kappa} \cdot P^{\kappa} = P^{\kappa} \cdot c \cdot P^{\kappa} = (P^{\kappa})^{\tau} = (P^{\kappa} \cdot c)^{\tau} = (P^{\kappa})^{\tau^*} =$ 208 $(c \cdot P^{\kappa})^{\tau^*} = (Q \cup R)^{\kappa}.$

209 A \circledast -algebra is a \oplus -algebra with a special element 1 where $(S, \cdot, 1)$ is a monoid, 210 $1^{\tau} = 1^{\tau^*} = \{1\}^{\kappa} = 1$ and for all non-empty subsets $P \subseteq S$, $P^{\kappa} = (P \cup \{1\})^{\kappa}$. 211 A ⊕-semigroup naturally induces a ⊕-algebra. We simply set $a \cdot b =$ 212 $\pi(ab)$, $a^{\tau} = \pi(a^{\omega})$, $a^{\tau^*} = \pi(a^{\omega^*})$ and $P^{\kappa} = \pi(P^{\eta})$. Similarly a \circledast -monoid ²¹³ naturally induces a ⊛-algebra with the special element being the neutral ²¹⁴ element.

Example 3. The ⊛-algebra induced by U_1 (recall Example [2\)](#page-6-0) is given below. It plays a crucial role in this work and will also be denoted by U_1 .

²¹⁵ The following is one of the fundamental results of [\[7,](#page-48-6) Lemma 3.4 and 216 Theorem 3.11, enabling us to work with \oplus -semigroup and \oplus -algebra inter-²¹⁷ changeably as we see fit.

218 **Theorem 1** ([\[7\]](#page-48-6)). A \oplus -semigroup (S, π) induces a unique \oplus -algebra. Also, 219 any finite \bigoplus -algebra is induced by a unique \bigoplus -semigroup.

²²⁰ The proof of Theorem [1](#page-7-0) is accomplished in [\[7\]](#page-48-6) via the novel concept of evaluation trees. Given a \oplus -semigroup $(S, \cdot, \tau, \tau^*, \kappa)$, it helps in construction 222 of a unique generalized associativity satisfying map $\pi: S^{\oplus} \to S$ such that 223 (S, π) induces the \oplus -algebra $(S, \cdot, \tau, \tau^*, \kappa)$.

Definition 1. An evaluation tree over a word $u \in S^{\oplus}$ is a tree $\mathcal{T} = (T, \iota)$ 225 where T is the set of vertices, and $\iota: T \to S$ assigns a value of S to each 226 vertex. Every branch/path of $\mathcal T$ is of finite length and every vertex in T is a factor of u. In particular, the root is u. The children of a vertex represent a factorization of the (parent) vertex, and thus the (countable linear) ordering of the children is important. The tree has the following properties:

- 230 A leaf is a singleton letter $a \in S$ such that $\iota(a) = a$.
- Internal nodes have either two or ω or ω^* or η many children.

232 • If w has two children v_1 followed by v_2 , then $w = v_1v_2$ and $u(w) =$ 233 $\iota(v_1)\cdot\iota(v_2)$.

234 • If w has ω sequence of children $\langle v_1, v_2, \dots \rangle$, then there is an idempotent e such that $e = \iota(v_i)$ for all $i \geq 1$, and $w = \prod_{i \in \omega} v_i$ and $\iota(w) = e^{\tau}$.

236 • If w has ω^* sequence of children $\langle \ldots, v_{-2}, v_{-1} \rangle$, then there is an idempotent f such that $f = \iota(v_i)$ for all $i \leq -1$, and $w = \prod_{i \in \omega^*} v_i$ and 238 $\iota(w) = f^{\tau^*}.$

• If w has children $\langle v_i \rangle_{i \in \eta}$ over η , then $w = \prod_{i \in \eta} v_i$ such that $\prod_{i \in \eta} \iota(v_i)$ 240 is the perfect shuffle of some $E \subseteq S$, and $\iota(w) = E^{\kappa}$.

²⁴¹ The value of $\mathcal T$ is defined to be $\iota(u)$. Further an ordinal rank can be associ-²⁴² ated to each node of $\mathcal T$ such that the rank of a node is greater than the rank ²⁴³ any of its children. This can be used as an induction parameter to reason ²⁴⁴ about any countable word $u \in S^{\oplus}$. It was shown in [\[7,](#page-48-6) Proposition 3.8 and $_{245}$ 3.9 that every word u has an evaluation tree and the values of two evaluation 246 trees of u are equal. Setting $\pi(u) = \iota(u)$ creates the necessary map, as it is 247 shown that π defined this way satisfies generalized associativity. Therefore, $a \oplus$ -algebra defines the generalized associativity product $\pi: S^{\oplus} \to S$. The ²⁴⁹ correspondence between ⊕-semigroups and ⊕-algebras permits interchange-²⁵⁰ ability; we implicitly exploit this.

Example 4. Consider the ⊛-algebra Gap = $(M, \cdot, \tau, \tau^*, \kappa)$ where $M =$ $\{1, [1], [2], (1], (2), g\}$, and the operations are defined as follows for M.

²⁵¹ It can be easily verified that Gap satisfies the axioms of ⊛-algebra. Following ²⁵² our discussion, any countable word $u \in M^{\oplus}$ is assigned a unique value by this $_{253}$ algebra via some evaluation tree for u. For instance consider the evaluation 254 tree for the word $\left[\right]^{ \omega \left[\right] }$ $\right|^{ \omega *}$ consisting of a root with two children where the left $_{255}$ (resp. right) child represents the word $[\psi$ (resp. $[\psi^*]$; the left (resp. right) 256 child has ω (resp. ω^*) many children [] and has value [][†] (resp. []^{†*}). As a ²⁵⁷ result, the value at the root is $[]^{\tau} \cdot []^{\tau^*} = [] \cdot (] = g$. From our discussion so ²⁵⁸ far, it should be clear that Gap evaluates a word over $\{[\]\}^{\oplus}$ to g if and only 259 if the word's underlying linear ordering contains a gap (an ordering α has a ²⁶⁰ gap if it is of the form $\beta_1 + \beta_2$ where β_1 has no maximum element and β_2 has ²⁶¹ no minimum element).

²⁶² Now we briefly discuss some natural algebraic notions. Let (S, π) and 263 (S', π') be \oplus -semigroups. A morphism from (S, π) to (S', π') is a map $h : S \to$ 264 S' such that, for every $w \in S^{\oplus}$, $h(\pi(w)) = \pi'(\bar{h}(w))$ where \bar{h} is the pointwise 265 extension of h to words. By a slight abuse of notation, we write $h(w)$ for 266 $w \in S^{\oplus}$ to denote $h(\pi(w)) \in S'$. A \oplus -language $L \subseteq \Sigma^{\oplus}$ is recognizable 267 if there exists a morphism $h: (\Sigma^{\oplus}, \Pi) \to (S, \pi)$ to a finite \oplus -semigroup ²⁶⁸ such that $L = h^{-1}(h(L))$. A ⊛-language $L \subseteq \Sigma^*$ is *recognizable* if there exists a morphism $h: (\Sigma^{\circledast}, \Pi) \to (S, \pi)$ to a finite \circledast -monoid such that $L =$ ₂₇₀ $h^{-1}(h(L))$. We'll simply talk about *language* of countable words and let the ²⁷¹ context explain whether the empty word is being considered or not. Note ²⁷² that these morphisms are completely determined by their restriction to the \mathcal{L}_{273} set Σ, as any map from Σ into S extends to a unique morphism from Σ^{\oplus} to ²⁷⁴ (S, π). By the equivalence of finite ⊕-semigroup and ⊕-algebra, a map from 275 Σ into a ⊕-algebra extends to a 'morphism' from Σ^{\oplus} into the ⊕-algebra, and ²⁷⁶ languages can be naturally recognized via such morphisms.

 277 Example 5. Let $A \subseteq \Sigma$ be a non-empty subset of the alphabet, and L be 278 the set of words that contain an occurence of some letter from A. It is easy 279 to see that the map $h: \Sigma \to U_1$ sending $h(a) = 0$ for all $a \in A$, and $h(b) = 1$ ²⁸⁰ for all $b \notin A$ recognizes L as $L = h^{-1}(0)$.

281 Example 6. Consider the map $h: \Sigma \to \text{Gap}$ defined by $h(a) = \Box$ for all 282 $a \in \Sigma$. The resulting morphism maps any word u to $h(u) = q$ if and only 283 if the domain of the word admits a gap. Consider a word $v = a^{\omega} a^{\omega^*}$ for 284 $a \in \Sigma$. Its pointwise extension under the map h is $\bar{h}(v) = \Box^{\omega} \Box^{\omega^*}$. If (Gap, π) 285 is the ⊛-monoid that induces the ⊛-algebra Gap, then since h extends to a morphism, we have $h(v) = \pi(h(v)) = q$ as per the evaluation tree discussion ²⁸⁷ in Example [4.](#page-8-0)

²⁸⁸ Remark 1. Let $h: \Sigma^{\oplus} \to M$ be a map/morphism into a \oplus -algebra. For any word $v \in \Sigma^{\oplus}$, we know its pointwise extension $\bar{h}(v) \in M^{\oplus}$ has an evaluation tree (T, ι) . Note that every node in T represents a factor of $\bar{h}(v)$; this factor 291 naturally corresponds to a factor v' of v, that is, the node in T represents ²⁹² $\bar{h}(v')$. Furthermore $h(v')$ is exactly $\iota(\bar{h}(v'))$, the value that ι maps the node ²⁹³ to. Therefore the evaluation tree can equivalently be considered over the 294 word $v \in \Sigma^{\oplus}$ with h mapping the word at each node to its evaluation.

295 Note that (see [\[10\]](#page-49-0)) any recognizable language L is associated a finite

296 (canonical/minimal) syntactic ⊕-semigroup $\mathsf{Syn}(L)$ that divides^{[1](#page-10-1)} every ⊕- $_{297}$ semigroup recognizing L. Further $\textsf{Syn}(L)$ can be effectively computed from 298 a finite description of L.

²⁹⁹ We close this section by mentioning the main result of [\[7\]](#page-48-6).

300 **Theorem 2** ([\[7\]](#page-48-6)). A language of countable words is recognizable iff it is ³⁰¹ MSO-definable.

³⁰² In the rest of this article we often refer to recognizable languages of count-₃₀₃ able words as *regular languages* of countable words or simply regular lan-³⁰⁴ guages.

³⁰⁵ 3. Small Fragments of FO

Our aim is to find algebraic characterizations of interesting logic classes interpreted over countable words. In this section, we focus on two particularly small fragments of first-order logic. First-order logic (FO) over a finite alphabet Σ is a classical logic which can be inductively built using the following operations.

$$
\varphi := a(x) | x < y | \varphi \vee \varphi | \neg \varphi | \exists x \varphi
$$

306 Here $a \in \Sigma$ and φ is any FO formula. We use the letters ϕ, ψ, φ (with 307 or without subscripts) to denote FO formulas, and the letters x, y, z (with ³⁰⁸ or without subscripts) to denote FO variables which represent positions in ³⁰⁹ countable words. We skip the standard semantics.

³¹⁰ A sentence is a formula with no free variable. The language of a sentence 311 φ , denoted by $L(\varphi)$, is the set of all words $u \in \Sigma^{\oplus}$ that satisfy φ . Let us look ³¹² at some examples of countable languages definable in FO.

Example 7. The following FO sentence describes the language of all words whose underlying linear ordering is dense and has at least two distinct positions.

$$
\exists x \exists y \ x < y \land \forall x \forall y \ (x < y) \Rightarrow (\exists z \ x < z < y)
$$

313 **Example 8.** The language of all words containing a gap where the set of ³¹⁴ letters approaching the gap (arbitrarily closely) from the left is disjoint from

 1_M divides N if M is a homomorphic image of a sub-⊛-semigroup of N

³¹⁵ the corresponding set of letters from the right, is definable in FO. In par-316 ticular, consider the set $\{w_1w_2 \mid w_1 \in \Sigma^{\circledast}\{a\}^{\oplus}$ has no maximum, and $w_2 \in$ 317 $\{b\}^{\oplus} \Sigma^{\circledast}$ has no minimum}. It is definable in FO by guessing two points x 318 and y in w_1 and w_2 respectively, and expressing the following properties for 319 positions in this interval - (1) all positions are labelled a or b , (2) b labelled 320 positions come after all the a labelled positions, (3) the a-labelled positions 321 do not have a maximum, and (4) the b-labelled positions do not have a min-³²² imum.

323 1.
$$
\varphi_1(x, y) ::= \forall z \ x \leq z \leq y \Rightarrow a(z) \vee b(z).
$$

$$
324 \qquad 2. \ \varphi_2(x,y) ::= \forall z \ (x \leq z \leq y \land b(z)) \Rightarrow \neg (\exists z' \ z < z' \leq y \land a(z')),
$$

325 3.
$$
\varphi_3(x, y) ::= \forall z \ (x \le z \le y \land a(z)) \Rightarrow \exists z' \ z < z' < y \land a(z')
$$

$$
\text{and} \quad 4. \ \varphi_4(x,y) ::= \forall z \ (x \leq z \leq y \land b(z)) \Rightarrow \exists z' \ x < z' < z \land b(z').
$$

327 The sentence $\exists x \exists y \ a(x) \wedge b(y) \wedge x \langle y \wedge \varphi_1(x, y) \wedge \varphi_2(x, y) \wedge \varphi_3(x, y) \wedge \varphi_4(x, y)$ ³²⁸ defines the language.

³²⁹ The classical Schützenberger-McNaughton-Papert theorem characterizes FO-definabilty of a regular language of finite words in terms of aperiodicity of its finite syntactic monoid. The survey [\[20\]](#page-50-3) presents similar decidable characterizations of several interesting small fragments of FO-logic such as FO^1 , FO^2 , $B(\exists^*)$ – boolean closure of the existential first-order logic. Here we start by identifying algebraic characterizations, over countable words, for FO^1 and $B(\exists^*)$.

³³⁶ 3.1. FO with single variable

 $_{337}$ The fragment $FO¹$ has access to only one variable. We recall that over $\frac{338}{100}$ finite words a regular language is FO¹-definable iff its syntactic monoid is idempotent, that is $x^2 = x$ for any element x, and commutative, that is 340 $x \cdot y = y \cdot x$ for any elements x, y .

 Clearly, FO^1 can recognize all words with a particular letter. With a ³⁴² single variable the logic cannot talk about order of positions. This gives an 343 intuition that the syntactic \oplus -semigroup of a language definable in FO¹ is $_{344}$ commutative. Neither can FO¹ count the number of occurrences of a letter. $_{345}$ In short FO¹ can merely detect the presence or absence of a letter.

We say that a \bigoplus -algebra $(M, \cdot, \tau, \tau^*, \kappa)$ is shuffle-trivial if it satisfies the ³⁴⁷ following identity: $x_1 \cdot x_2 \cdot \ldots \cdot x_p = \{x_1, \ldots, x_p\}^{\kappa}$. Note that, every element 348 of a shuffle-trivial \bigoplus -algebra is *shuffle-idempotent* (*m* is a shuffle idempotent 349 if $m^k = m$). From the axioms of a \bigoplus -algebra it easily follows that, m 350 being a shuffle-idempotent implies $m^{\tau} = m^{\tau^*} = m \cdot m = m$. Furthermore s_{351} since $x \cdot y = \{x, y\}^{\kappa} = \{y, x\}^{\kappa} = y \cdot x$, a shuffle-trivial \oplus -algebra is also ³⁵² commutative.

- **Theorem 3.** Let $L \subseteq \Sigma^{\oplus}$ be a regular language. The following are equivalent.
- $1.$ L is recognized by some finite shuffle-trivial \oplus -algebra.

³⁵⁵ 2. L is a boolean combination of languages of the form B^{\oplus} where $B \subseteq \Sigma$.

 $\substack{356}$ 3. L is definable in FO¹.

 μ 4. L is recognized by direct product of U_1 s.

- 358 5. The syntactic \bigoplus -algebra of L is shuffle-trivial.
- 359 Proof.

360 $(1 \Rightarrow 2)$ Let L be recognized by a morphism $h: \Sigma^{\oplus} \to (M, \cdot, \tau, \tau^*, \kappa)$ into a ³⁶¹ finite shuffle-trivial \oplus -algebra. Consider an arbitrary word $u \in \Sigma^{\oplus}$ and let 362 alph $(u) \subseteq \Sigma$ be the set of letters in the word u, and let $\gamma(u) = \Pi_{a \in \text{alph}(u)} h(a)$ 363 (note that due to commutativity, $\gamma(u)$ is well-defined). We show that $h(u) =$ 364 $\gamma(u)$. The proof is via the evaluation tree (T, h) of the word u. We show 365 by induction on the rank of the nodes in tree (T, h) that $h(v) = \gamma(v)$ for all 366 nodes v in the tree. Consider a node v of the tree.

 $1. \text{ Case } v \text{ is a letter: The induction hypothesis clearly holds.}$

368 2. Case v is a concatenation of words v_1 and v_2 : By induction hypothesis 369 $h(v_1) = \gamma(v_1)$ and $h(v_1) = \gamma(v_1)$. Hence we have $h(v) = h(v_1) \cdot h(v_2) =$ 370 $\gamma(v_1)\cdot\gamma(v_2)$. Since $\text{alph}(v) = \text{alph}(v_1) \cup \text{alph}(v_2)$ and all elements of M 371 are idempotents and commute, it is easy to see that $\gamma(v) = \gamma(v_1) \cdot \gamma(v_2)$. $Hence h(v) = \gamma(v)$, and the induction hypothesis holds.

373 3. Case v is an ω sequence of words $\langle v_1, v_2, \dots \rangle$ such that there exists an $e \in M$ and $h(v_i) = e$ for all $i \geq 1$. Therefore $h(v) = e^{\tau}$; since in M, 375 $e = e^{\tau}$, we have $h(v) = e$. We have to show $\gamma(v) = e$.

 \sum_{376} Clearly there is a $k \geq 1$ such that $\text{alph}(v_1v_2 \ldots v_k) = \text{alph}(v)$; therefore, denoting $v' = v_1v_2...v_k$, we know $\gamma(v') = \gamma(v)$. By induction ³⁷⁸ hypothesis and the finite concatenation case seen earlier, we know

379 $\gamma(v') = h(v') = \prod_{1 \leq i \leq k} h(v_i) = e$. Therefore $\gamma(v) = e = h(v)$, and ³⁸⁰ the induction hypothesis holds in this case.

381 4. Case v is an ω^* sequence of words: This is symmetric to the case above.

382 5. Case $v = \prod_{i \in \eta} v_i$ such that $\prod_{i \in \eta} h(v_i)$ is a perfect shuffle of the set 383 $\{b_1, \ldots, b_k\} \subseteq M$. Hence $h(v) = \{b_1, \ldots, b_k\}^{\kappa}$. By the shuffle-trivial 384 property, we have $h(v) = b_1 \cdots b_k$. We have to prove $\gamma(v) = b_1 \cdots b_k$. 385 Let $l \geq k$ and $j_1, j_2, \ldots, j_l \in \eta$ be such that we get the following: 386 ${h(v_{j_1}), h(v_{j_2}), \ldots, h(v_{j_l})} = {b_1, \ldots, b_k}$ and $\cup_{1 \leq i \leq l} \text{alph}(v_{j_i}) = \text{alph}(v)$. Benoting $v' = v_{j_1} \ldots v_{j_l}$, we therefore get $\gamma(v') = \gamma(v)$, and that ³⁸⁸ $h(v') = \prod_{1 \leq i \leq l} h(v_{j_i}).$ Since elements of M commute and are idem-389 potents, we have $h(v') = b_1 \cdot \cdots \cdot b_k$. By the induction hypothesis and finite concatenation case earlier, we can say $\gamma(v') = h(v')$. Hence 391 $\gamma(v) = b_1 \cdot \cdots \cdot b_k$, and the induction hypothesis holds in this case also.

The induction hypothesis, therefore, holds for any word $u \in A^{\oplus}$. So L is union of equivalence classes defined by the finite index relation $\{(u, v) \mid$ $a_lab_l(u) = a_lb_l(v)$. All these classes are boolean combination of languages of the form B^{\oplus} for some $B \subseteq \Sigma$, as seen below.

$$
\{u \mid \mathrm{alph}(u) = B\} = B^{\oplus} \setminus \left(\bigcup_{b \in B} (B \setminus \{b\})^{\oplus}\right)
$$

392 (2 \Rightarrow 3) Note that B^{\oplus} is expressed by the FO¹ formula $\forall x \vee_{a \in B} a(x)$. The $_{393}$ claim follows from boolean closure of FO¹.

394 (3 \Rightarrow 4) Due to the restriction of a single variable, any formula $\varphi(x)$ is a ³⁹⁵ boolean combination of atomic letter predicates. Since a position in a word 396 can have exactly one letter, any non-trivial formula $\varphi(x)$ is a disjunction 397 of letter predicates, e.g. $a(x) \vee b(x)$. A language defined by the sentence 398 $\exists x \ (a(x) \vee b(x))$ is recognized by the \oplus -algebra U_1 via $h: \Sigma \to U_1$ that maps 399 a, b to $0 \in U_1$ and every other letter to $1 \in U_1$. A language defined by boolean 400 combination of such sentences can be recognized by direct products of U_1 .

⁴⁰¹ (4 ⇒ 5) The syntactic ⊕-algebra of L divides any ⊕-algebra that recognizes μ_2 L; so it divides a direct product of finitely many U_1 . It is easily verified ϕ ₄₀₃ that \oplus -algebra U_1 is shuffle-trivial. Since these properties are identities, and ⁴⁰⁴ identities are preserved under direct product and division (see [\[21\]](#page-50-4)), we get 405 that the syntactic \bigoplus -algebra of L is shuffle-trivial.

406 (5 ⇒ 1) The syntactic \bigoplus -algebra of L is finite because L is a regular language. ⁴⁰⁷ Also, it is shuffle-trivial by assumption, and a language is always recognized ⁴⁰⁸ by its syntactic ⊕-algebra. So this direction trivially holds. \Box

⁴⁰⁹ 3.2. Boolean closure of existential FO

410 Let us first recall the characterization of $B(\exists^*)$ - the boolean closure of ⁴¹¹ existential FO over finite words. This is precisely the content of the theorem ⁴¹² due to Simon [\[22\]](#page-50-5). The usual presentation of Simon's theorem refers to 413 piecewise testable languages which are easily seen to be equivalent to $B(\exists^*)$ -⁴¹⁴ definable languages. Simon's theorem states that a regular language of finite 415 words is $B(\exists^*)$ -definable iff its syntactic monoid is J-trivial. We recall that 416 a monoid M is J-trivial if for all $m, n \in M$, $MmM = Mn$ implies $m = n$. $_{417}$ In short, the Green's equivalence relation J on M is the equality relation. ⁴¹⁸ We refer to [\[23\]](#page-50-6) for a detailed study of Green's relations and their use in the ⁴¹⁹ proof of Simon's theorem.

420 The proof of Simon's theorem uses the congruence \sim_n , parametrized by ⁴²¹ $n \in \mathbb{N}$, on finite words Σ^* : for $u, v \in \Sigma^*$, $u \sim_n v$ if u and v have the same set 422 of subwords of length less than or equal to n. Note that \sim_n has finite index. 423 We fix $n \in \mathbb{N}$ and work with \sim_n defined on countable words Σ^* : for ⁴²⁴ $u, v \in \Sigma^*$, $u \sim_n v$ if u and v have the same set of subwords of length less ⁴²⁵ than or equal to *n*. It is immediate that \sim_n is an equivalence relation on Σ^* 426 of finite index. We let $S_n = \sum_{n=1}^{\infty} \alpha_n$ denote the finite set of \sim_n -equivalence 427 classes. For a word w, $[w]_n$ denotes the ∼_n-equivalence class which contains 428 w .

Lemma 1. There is a natural well-defined product operation $\pi : S_n^* \to S_n$ as $_3$ ₄₃₀ follows: $\pi\Big(\prod_{i\in\alpha}[w_i]_n\Big) = \begin{bmatrix} \prod_{i\in\alpha}w_i \end{bmatrix}_n$. This operation π satisfies the general-431 ized associativity property. As a result, $\mathbf{S_n} = (S_n, 1 = [\varepsilon]_n, \pi)$ is a \circledast -monoid.

Assumed that the lemma implies that $h_n : \Sigma^{\circledast} \to \mathbf{S}_n$ mapping w to $[w]_n$ is a ⁴³³ morphism of ⊛-monoids.

⁴³⁴ Proof. Let $w = \prod_{i \in \alpha} w_i$ and $w' = \prod_{i \in \alpha} w'_i$ where $w_i \sim_n w'_i$ for all $i \in \alpha$. To 435 show π is well defined, we need to show $w \sim_n w'$. Suppose u is a subword of 436 w of length n. We can factorize u as $u = u_1 u_2 \dots u_k$ where u_j (for $1 \leq j \leq k$) ⁴³⁷ is a subword of w_{i_j} . Since $w_{i_j} \sim_n w'_{i_j}$ and $|u_j| \leq n$, we have u_j is a subword ⁴³⁸ of w'_{i_j} , and thus u is a subword of w' as well. Therefore, π is well defined.

Next we show that π satisfies the generalized associativity property. Let $u = \prod_{i \in \alpha} u_i$ where $u_i = \prod_{j \in \alpha_i} [v_j]_n$ and α is any countable linear ordering. We have $\pi(u_i) = \prod_{j \in \alpha_i} v_j$ _n and hence

$$
\pi(\prod_{i\in\alpha}\pi(u_i))=\left[\prod_{i\in\alpha}(\prod_{j\in\alpha_i}v_j)\right]_n=\pi(u)
$$

⁴³⁹ This completes the proof.

440 It is known [\[21\]](#page-50-4) that a finite monoid (M, \cdot) is *J*-trivial if and only if it satisfies the (profinite) identities: $x^! = x \cdot x^!$ and $(x \cdot y)^! = (y \cdot x)^!$. Here $x^!$ 441 442 denotes the unique idempotent in the semigroup generated by x; guarantee ⁴⁴³ of existence and uniqueness of this generated idempotent is a basic result for 444 finite semigroups. We also use the notation $x^!$ for elements of ⊛-algebra and 445 it is the idempotent generated by x using the binary concatenation operation. 446 We say that a ⊛-algebra is *shuffle-power-trivial* if it satisfies the (profinite) 447 identity: $(x_1 \cdot x_2 \cdot \ldots \cdot x_p)^! = \{x_1, \ldots, x_p\}^{\kappa}$. Note that, every idempotent of 448 such a ⊛-algebra is a shuffle-idempotent: $x' = x$ implies $x^k = x$.

Remark 2. Note that in a shuffle-power-trivial algebra, $(x \cdot y)' = \{x, y\}^{\kappa}$ $\{y, x\}^{\kappa} = (y \cdot x)^!$. Also,

$$
x^! = x^{\kappa} = (x^{\kappa})^{\tau} = (x^!)^{\tau} = x^{\tau} = x \cdot x^{\tau} = x \cdot x^!
$$

⁴⁴⁹ Thus, a shuffle-power-trivial ⊛-algebra is J-trivial. It is also clear that we 450 have $x^! = x^{\tau} = x^{\tau^*} = x^{\kappa}$.

451 Lemma 2. The ⊛-algebra S_n is shuffle-power-trivial.

Proof. Let $x_1, x_2, \ldots, x_p \in S_n$. Suppose x_i is the equivalence class of word u_i 452 453 over Σ . It is easily seen that any n length subword of $\{u_1, u_2, \ldots, u_p\}^{\eta}$ is also 454 present in $(u_1u_2...u_n)^n$. Therefore $\{x_1, x_2,...,x_p\}^{\kappa} = (x_1 \cdot x_2 ... x_p)^n$. Since 455 $\{x_1, x_2, \ldots, x_p\}^{\kappa}$ is idempotent, we get $\{x_1, x_2, \ldots, x_p\}^{\kappa} = (x_1 \cdot x_2 \ldots x_p)^{!}$.

- 456 **Theorem 4.** Let $L \subseteq \Sigma^*$ be a regular language. The following are equivalent.
- μ_{457} 1. L is recognized by a finite shuffle-power-trivial \otimes -algebra.
- ⁴⁵⁸ 2. L is recognized by the quotient morphism $h_n : \Sigma^{\circledast} \to \mathbf{S}_n$ for some n.
- ⁴⁵⁹ 3. L is definable in $B(\exists^*)$.

 \Box

460 4. The syntactic \otimes -algebra of L is shuffle-power-trivial.

⁴⁶¹ Proof.

⁴⁶² $(1 \Rightarrow 2)$ Let L be recognized by $h: \Sigma^* \to \mathbf{M}$ where $\mathbf{M} = (M, 1, \cdot, \tau, \tau^*, \kappa)$ ⁴⁶³ is a finite shuffle-power-trivial ⊛-algebra. Since shuffle-power-triviality is ⁴⁶⁴ preserved in sub-⊛-algebra, we can assume h to be surjective. Consider 465 the restriction of h to the free monoid Σ^* resulting in the induced monoid 466 morphism. We denote it by $h' : \Sigma^* \to (M, 1, \cdot)$. By the identities of the $467 \quad \circled{8}$ -algebra M and its consequences as pointed out in the Remark [2,](#page-15-1) this 468 morphism is surjective and the monoid $(M, 1, \cdot)$ is J-trivial.

⁴⁶⁹ Using the argument from Simon's theorem (see [\[23,](#page-50-6) Theorem 3.13]), there 470 exists $n \in \mathbb{N}$, such that $(M, 1, \cdot)$ is a quotient of Σ^* / \sim_n and $u \sim_n v$ implies $h'(u) = h'(v)$. We need to 'lift' this result to general countable words. For 472 this we prove that any countable word w has a finite subword \hat{w} such that ⁴⁷³ $w \sim_n \hat{w}$ and $h(w) = h'(\hat{w})$. Let $\mathcal{T} = (T, h)$ be an evaluation tree over w. We 474 prove by induction that for every node v of the tree, there is a finite subword ⁴⁷⁵ \hat{v} of v with $v \sim_n \hat{v}$ and $h(v) = h'(\hat{v})$.

 $\frac{476}{476}$ 1. Case v is a letter: The induction hypothesis clearly holds by taking 477 $\hat{v} = v.$

⁴⁷⁸ 2. Case v is a concatenation of words v_1 and v_2 : By induction hypothesis, ⁴⁷⁹ we have finite subwords \hat{v}_1 and \hat{v}_2 of v_1 and v_2 respectively such that 480 $\hat{v}_1 \sim_n v_1$, $h(v_1) = h'(\hat{v}_1)$ and $\hat{v}_2 \sim_n v_2$, $h(v_2) = h'(\hat{v}_2)$ Note that ⁴⁸¹ $\hat{v}_1 \sim_n v_1$ and $\hat{v}_2 \sim_n v_2$ implies $\hat{v}_1 \hat{v}_2 \sim_n v_1 v_2$. Further, $\hat{v}_1 \hat{v}_2$ is a finite 482 subword of v_1v_2 and $h(v) = h(v_1) \cdot h(v_2) = h'(\hat{v}_1) \cdot h'(\hat{v}_2) = h'(\hat{v}_1\hat{v}_2)$. ⁴⁸³ This proves the induction hypothesis holds in this case.

484 3. Case v is an ω sequence of words $\langle v_1, v_2, \dots \rangle$ such that there exists as an idempotent $e \in M$ and $h(v_i) = e$ for all $i \ge 1$ and $h(v) = e^{\tau}$. As 486 observed in Remark [2,](#page-15-1) $e = e^{\kappa} = (e^{\kappa})^{\tau} = e^{\tau}$; therefore we have $h(v) = e$. ⁴⁸⁷ Because there are only finitely many words of length less than or equal 488 to n, clearly there is a $k \geq 1$ such that $v_1v_2 \ldots v_k \sim_n v$. Let us denote ⁴⁸⁹ $v_1v_2 \ldots v_k$ by v'. Note that since e is an idempotent, $h(v') = e = h(v)$. ⁴⁹⁰ It is now easy to complete the proof by using induction hypothesis for each v_i for $1 \leq i \leq k$ and using the arguments in the concatenation ⁴⁹² case above.

493 4. Case v is an ω^* sequence of words: This is symmetric to the case above.

⁴⁹⁴ 5. Case $v = \prod_{i \in \eta} v_i$ such that $u = \prod_{i \in \eta} h(v_i) \in M^{\oplus}$ is a perfect shuffle of ⁴⁹⁵ $\{b_1, \ldots, b_k\} \subseteq M$ and $h(v) = \{b_1, \ldots, b_k\}^k$. By the shuffle-power-trivial 496 property, we have $h(v) = (b_1 \cdot \ldots \cdot b_k)^!$.

We claim that there exists a finite subset $X \subset \eta$ such that, with $v' =$ ⁴⁹⁸ $\prod_{i\in X}v_i$ and $u'=\prod_{i\in X}h(v_i)$, $v \sim_n v'$ and the finite subword u' of ⁴⁹⁹ *u* is a large power of the word $b_1b_2...b_k$. This would imply $h(v') =$ $(b_1 \cdot \ldots \cdot b_k)^! = h(v)$. We can now apply induction hypothesis on v_i for 501 each $i \in X$ and proceed as in the concatenation case.

 \mathfrak{so}_2 It remains to show the existence of X. We first choose X large enough $\frac{1}{503}$ so that all subwords of v upto length n are represented in v' and then \sum_{504} increase X to ensure that u' is of the desired form. This is possible 505 thanks to the fact that u is perfect shuffle of $\{b_1, \ldots, b_k\}.$

506 Now for any two countable words u and v, if $u \sim_n v$, then $h(u) = h'(u) =$ $h'(\hat{v}) = h(v)$ where the middle equality is from the argument used in the ⁵⁰⁸ proof of Simon's theorem mentioned before. Invoking Lemma [1,](#page-14-0) it follows that the given morphism h factors through the morphism $h_n : \Sigma^{\circledast} \to \mathbf{S}_n$ that 510 maps u to $[u]_n$.

- $_{511}$ (2 \Rightarrow 1) This follows from Lemma [2.](#page-15-2)
- $(2 \Rightarrow 3)$ Every equivalence class of \sim_n is clearly definable in $B(\exists^*)$.

513 $(3 \Rightarrow 2)$ Let L be recognized by the formula $\alpha ::= \exists x_1, \ldots, x_n \varphi(x_1, \ldots, x_n)$. 514 We show that for an $u \sim_n v$, $u \models \alpha$ if and only if $v \models \alpha$. Consider an as- ϵ_{515} signment s which assigns the variables x_i to a position in the domain of u 516 such that $u, s \models \varphi$. Note that since φ is a quantifier free formula it is a μ ₅₁₇ boolean combination of formulas of the form $x_i < x_j$, $x_i = x_j$ and $a(x_i)$. Let 518 $X = \{s(x_i) \mid 1 \leq i \leq n\} \subseteq \text{dom}(u)$ be the set of n points which are assigned 519 to the x_i s. Since $u \sim_n v$, there is a set $Y \subseteq \text{dom}(v)$ of n points such that $u|_X = v|_Y$. Consider an assignment \hat{s} to variables x_i to positions in Y such ϵ_{521} that $s(x_i) < s(x_i)$ iff $\hat{s}(x_i) < \hat{s}(x_i)$. Clearly such an assignment satisfies $522 \, v, \hat{s} \models \varphi$ since the ordering between the variables and the letter positions $\frac{1}{523}$ are preserved. Therefore we get that $u \models \alpha$ implies $v \models \alpha$. A symmetric ⁵²⁴ argument shows the other direction.

 $_{525}$ (4 \Rightarrow 1) This is a trivial observation.

 $526 \qquad (1 \Rightarrow 4)$ This follows from the fact that identities are preserved under ⁵²⁷ division. \Box

4. Algebraic Products

 So far we have provided algebraic characterizations for small fragments of first order logic. Note that the characterizations are of two kinds — decidable characterization in terms of identities (we have given such characterizations for both FO¹ and $B(\exists^*)$, and decompositional characterization where a com- bination of simple algebraic structures recognize the exact class of language \mathfrak{g}_{334} (we have given such a characterization for FO¹). We now move on to char- acterizing higher logic classes. In [\[10\]](#page-49-0), decidable characterizations for many interesting logic classes, e.g. FO, have been discovered. So we focus on pro- $_{537}$ viding decompositional characterizations instead. Recall that for $FO¹$, direct product of U_1 s provide an exact characterization. However for more expres- sive logics, direct product is not suitable for getting simple prime algebraic structures, since direct product can only handle boolean combination of lan- guages recognized by individual structures. In the finite words setting, block product is an algebraic product that has played a significant role in pro- viding interesting decompositional characterizations of several logic classes like FO and MSO [\[15\]](#page-49-5)). Motivated by this, we introduce the block product operation for ⊕-semigroups and ⊕-algebras, and investigate decompositional $_{546}$ characterizations of FO, its subclass FO^2 , and also beyond first order logic.

 In this section, our aim is to develop a suitable block product operation that is conceptually the right counterpart to the classical notion over monoids and finite words. To achieve this aim, we define the notion of compatible left and right actions on ⊕-semigroups and generalize the concept of semidirect product from semigroup theory to this setting. Block product, being a special case of semidirect product, gets defined as a result. A similar development for the block product operation in the classical setting is present in [\[15\]](#page-49-5). Finally we establish a result called block product principle which relates language recognized by the block product of two structures in terms of languages recognized by each of the individual structures.

4.1. Actions

558 Let (M, π) and $(N, \hat{\pi})$ be two \bigoplus -semigroups. Note that the set of all \bigoplus - \mathfrak{so} semigroup morphisms from $(N, \hat{\pi})$ to itself forms a monoid —the endomor-560 phism monoid of N— under function composition. A left action of (M, π) \mathfrak{so}_1 on $(N, \hat{\pi})$ is a morphism from M into the endomorphism monoid of N. In $\frac{562}{100}$ other words, it is a map $M \times N \rightarrow N$ satisfying the following properties (we $\frac{1}{563}$ denote by mn the element to which the pair (m, n) maps).

564 B-1 $\pi(m_1m_2)n = m_1(m_2n)$

$$
565 \qquad \text{B-2} \qquad m\hat{\pi}(\prod_{i \in \alpha} n_i) = \hat{\pi}(\prod_{i \in \alpha} mn_i)
$$

 \mathcal{L}_{566} If M and N are both ⊛-monoids with neutral elements 1 and 1 respectively, \mathfrak{so}_5 then the action is called monoidal if, for all $m \in M$, $n \in N$ the following two ⁵⁶⁸ conditions hold.

$$
569 \quad C-1 \quad 1n=n
$$

$$
570 \quad C-2 \quad m\hat{1} = \hat{1}
$$

 571 A right action of M on N is defined symmetrically. M is said to have 572 compatible left and right actions on N if the actions commute, or in other σ_{573} words if, for $m, m' \in M$ and $n \in N$, the property $(mn)m' = m(nm')$ is ⁵⁷⁴ satisfied. We use the notation $m(\prod_{i\in\alpha}n_i)m'$ to denote the natural pointwise ⁵⁷⁵ extension $\prod_{i\in\alpha} mn_i m'$.

 576 Actions are naturally defined for \bigoplus -algebra as well. Let $(M, \cdot, \tau, \tau^*, \kappa)$ and ⁵⁷⁷ $(N, +, \hat{\tau}, \hat{\tau}^*, \hat{\kappa})$ be \oplus -algebras induced by \oplus -semigroups (M, π) and $(N, \hat{\pi})$ ⁵⁷⁸ respectively. The action requirements can be equivalently stated in terms of ⁵⁷⁹ algebra operators, e.g. the left action requirements are as follows:

$$
580 \quad D-1 \quad (m_1 \cdot m_2)n = m_1(m_2n)
$$

$$
581 \quad D-2 \quad m(n_1+n_2) = mn_1 + mn_2
$$

$$
582 \quad D-3 \quad mn^{\hat{\tau}} = (mn)^{\hat{\tau}}
$$

D-4 $mn^{\hat{\tau}^*} = (mn)^{\hat{\tau}^*}$ 583

$$
584 \quad D-5 \quad m\{n_1,\ldots,n_j\}^{\hat{\kappa}} = \{mn_1,\ldots,mn_j\}^{\hat{\kappa}}
$$

⁵⁸⁵ 4.2. Semidirect product

586 We define a bilateral semidirect product of \oplus -semigroups (M, π) and $587 \left(N, \hat{\pi}\right)$ where M has compatible left and right actions on N. Here onwards we ⁵⁸⁸ refer to bilateral semidirect product simply as semidirect product. Similarly ⁵⁸⁹ we refer to compatible left and right actions simply as actions.

Definition 2. Given (M, π) with actions on $(N, \hat{\pi})$, the map $\theta: (M \times N)^{\oplus} \to$ $M^{\oplus} \times N^{\oplus}$ associates with any word $u \in (M \times N)^{\oplus}$ two words $v \in M^{\oplus}$ and $w \in N^{\oplus}$ as follows. If $u = \prod_{i \in \alpha} (m_i, n_i)$, then $v = \prod_{i \in \alpha} m_i$ and $w =$ 592 ⁵⁹³ $\prod_{i \in \alpha} \pi(\prod_{j < i} m_j) n_i \pi(\prod_{j > i} m_j)$. See Figure [1.](#page-20-0)

Figure 1: $\theta(u) = (v, w)$

 $\frac{594}{2}$ The following lemma states a useful property of the map θ .

Lemma 3. Consider (M, π) with actions on $(N, \hat{\pi})$. Suppose $u = \prod_{i \in \alpha} u_i \in$ $(M \times N)^{\oplus}$ with $\theta(u) = (v, w)$ and for $i \in \alpha$, $\theta(u_i) = (v_i, w_i)$. Then $v =$ $\prod_{i\in\alpha}v_i$ and $w=\prod_{i\in\alpha}w_i'$ where

$$
w'_{i} = \pi(\prod_{ji} v_{j})
$$

595 Proof. Consider an arbitrary position $l \in \text{dom}(u)$ and let $u[l] = (m, n)$. 596 There exists $i \in \alpha$ such that $l \in \text{dom}(u_i)$. From Definition [2,](#page-19-0) $v[l] = m = v_i[l]$. ⁵⁹⁷ In contrast, $w[l] = \pi(v_{\lt l})n\pi(v_{\gt l})$ and $w_i[l] = \pi((v_i)_{\lt l})n\pi((v_i)_{\gt l})$. Note that ⁵⁹⁸ $v_{\le l} = (\prod_{j \le i} v_j)(v_i)_{\le l}$, and similarly for the suffix $v_{>l}$. Therefore $w[l] =$ ⁵⁹⁹ $\pi(\prod_{ji}v_j)$ by using generalized associativity of π and action ⁶⁰⁰ axioms (the axiom [B-1](#page-19-1) is used for the left action). The lemma follows. \Box

601 **Definition 3** (Semidirect Product). Given (M, π) with actions on $(N, \hat{\pi})$, 602 their semidirect product $M \ltimes N$ is the pair $(M \times N, \tilde{\pi})$ where $\tilde{\pi} \colon (M \times N)^{\oplus} \to$ 603 $M \times N$ is defined by: for u with $\theta(u) = (v, w)$, we let $\tilde{\pi}(u) = (\pi(v), \hat{\pi}(w))$.

 ϵ_{604} The proof of the following lemma verifies that $M \ltimes N$ is a \bigoplus -semigroup 605 by showing that $\tilde{\pi}$ satisfies the general associativity property.

606 Lemma 4. The structure $M \ltimes N = (M \times N, \tilde{\pi})$ is a \oplus -semigroup.

⁶⁰⁷ Proof. Let $u = \prod_{i \in \alpha} u_i$ where $u, u_i \in (M \times N)^{\oplus}$. We have to prove $\tilde{\pi}(u) =$ ⁶⁰⁸ $\tilde{\pi}(\prod_{i\in\alpha}\tilde{\pi}(u_i))$. Rewriting $\prod_{i\in\alpha}\tilde{\pi}(u_i)$ as z, we have to prove $\tilde{\pi}(u) = \tilde{\pi}(z)$.

609 Suppose $θ(u) = (v, w)$ and for $i ∈ α, θ(u_i) = (v_i, w_i)$. Then by Lemma [3,](#page-20-1) ⁶¹⁰ $v = \prod_{i \in \alpha} v_i$ and $w = \prod_{i \in \alpha} w'_i$ where w'_i is as given in the lemma statement. 611 By Definition [3,](#page-20-2) $\tilde{\pi}(u) = (\pi(v), \hat{\pi}(w))$. Using the generalized associativity 612 properties of π and $\hat{\pi}$, we get $\tilde{\pi}(u) = (\pi(\prod_{i \in \alpha} \pi(v_i)), \hat{\pi}(\prod_{i \in \alpha} \hat{\pi}(w'_i))).$

Next we analyze the word z. Note that $\text{dom}(z) = \alpha$ and $z[i] = \tilde{\pi}(u_i)$. Further, recall that $\theta(u_i) = (v_i, w_i)$. From Definition [3,](#page-20-2) we get that $\tilde{\pi}(u_i) =$ $(\pi(v_i), \hat{\pi}(w_i))$. So $z[i] = (\pi(v_i), \hat{\pi}(w_i))$. We now compute $\theta(z)$ using Defini-tion [2.](#page-19-0) Let $\theta(z) = (z', z'')$. It is easy to see that $z'[i] = \pi(v_i)$. Using this, we see that

$$
z''[i] = \pi(\prod_{ji} \pi(v_j))
$$

= $\hat{\pi}(\pi(\prod_{ji} v_j))$
= $\hat{\pi}(w'_i)$

Now we proceed with the computation of $\tilde{\pi}(z)$ by using Definition [3.](#page-20-2)

$$
\tilde{\pi}(z) = (\pi(z'), \hat{\pi}(z''))
$$

= (\pi(\prod_{i \in \alpha} \pi(v_i)), \hat{\pi}(\prod_{i \in \alpha} \hat{\pi}(w'_i)))

613 Comparing this with the expression for $\tilde{\pi}(u)$ derived earlier, we see that ⁶¹⁴ $\tilde{\pi}(u) = \tilde{\pi}(z)$. This completes the proof. \Box

615 Lemma 5. If M and N are both \circledast -monoids and the underlying actions are 616 monoidal, then $M \ltimes N$ is a \circledast -monoid.

 617 Proof. Let M and N have neutral elements 1 and 1 respectively. We prove 618 that $(1, \hat{1})$ is the neutral element of $M \ltimes N$. Consider $u \in (M \times N)^{\circledast}$. Let ⁶¹⁹ $\theta(u) = (v, w)$ and $\theta(u_{\neq (1, \hat{1})}) = (v', w')$. If $u[x] = (1, \hat{1})$, then by Definition [2](#page-19-0) 620 and by the property of monoidal actions $v[x] = 1$ and $w[x] = 1$. If $u[x] \neq 1$ ⁶²¹ (1, 1), then $v[x] = v'[x]$ and $w[x] = w'[x]$. So $\pi(v) = \pi(v')$ and $\hat{\pi}(w) = \hat{\pi}(w')$. 622 Hence $\tilde{\pi}(u) = \tilde{\pi}(u_{\neq (1,\hat{1})}).$ \Box

 ϵ_{623} Henceforth we work with the assumption that M and N are finite, and ⁶²⁴ turn to the problem of effective construction of semidirect product of finite 625 \oplus -algebras. Thanks to Theorem [1,](#page-7-0) we can restrict our attention to induced $\epsilon_{0.6} \oplus$ -algebras. Towards this, let $(M, \cdot, \tau, \tau^*, \kappa)$ and $(N, +, \hat{\tau}, \hat{\tau}^*, \hat{\kappa})$ be \oplus -algebras 627 induced by ⊕-semigroups (M, π) and $(N, \hat{\pi})$ respectively. Further, let M \ltimes ⁶²⁸ $N = (M \times N, \tilde{f}, \tilde{\tau}^*, \tilde{\kappa})$ denote the \bigoplus -algebra induced by $M \ltimes N = (M \times N)$ 629 $N, \tilde{\pi}$).

630 The following lemma says that the binary operator $\tilde{\cdot}$ of $M \ltimes N$ can be ϵ_{31} expressed using the binary operators \cdot (of M) and $+$ (of N). It follows easily 632 from the definition of the *induced* operator $\tilde{\tau}$ from $\tilde{\pi}$. We skip the proof as ⁶³³ this is same as the classical case.

 634 Lemma 6. The operator $\tilde{\cdot}$ can be defined as follows: 635 (m_1, n_1) $\tilde{\cdot}$ $(m_2, n_2) = (m_1 \cdot m_2, n_1m_2 + m_1n_2).$

 λ An easy consequence of the previous lemma is that if (m, n) is an idem-637 potent element of $M \times N$ then m is also an idempotent element of M.

 δ_{638} Now we focus on the unary operators $\tilde{\tau}$ and $\tilde{\tau}^*$. In view of the second δ_{639} axiom in the definition of a \bigoplus -algebra, it suffices to show that these operators 640 can be computed at idempotent elements of $M \times N$ in terms of the algebra $_{641}$ operators of M and N.

642 Lemma 7. Let (e, n) be an idempotent element of $M \ltimes N$. Then $(e, n)^{\tilde{\tau}} =$ 643 $(e^{\tau}, ne^{\tau} + (ene^{\tau})^{\hat{\tau}}), \text{ and } (e, n)^{\tilde{\tau}^*} = (e^{\tau^*}, (e^{\tau^*}ne)^{\hat{\tau}^*} + e^{\tau^*}n).$

 644 Proof. We present the proof only for $\tilde{\tau}$. By definition of the induced operator 645 $\tilde{\tau}$, $(e, n)^{\tilde{\tau}} = \tilde{\pi}(u)$ where $u = (e, n)^{\omega}$ is the ω -word over the domain $(\mathbb{N}, <)$ 646 such that every position is mapped to (e, n) . We first compute $\theta(u) = (v, w)$ α_{10} according to the Definition [2.](#page-19-0) It is easy to see that $v = e^{\omega}$ and w is the ω -word whose first position is mapped to ne^{τ} and all other positions are 649 mapped to ene^{τ}. As a result, $\pi(v) = e^{\tau}$ and $\hat{\pi}(w) = ne^{\tau} + (en e^{\tau})^{\hat{\tau}}$. The 650 proof now follows by observing that $\tilde{\pi}(u) = (\pi(v), \hat{\pi}(w)).$ \Box

 ϵ_{651} Finally, the next lemma shows that the operator $\tilde{\kappa}$ of $M \kappa N$ can be ϵ_{52} computed using the algebra operators of M and N.

Lemma 8. The operator $\tilde{\kappa}$ can be defined as follows:

$$
\{(m_1, n_1), \ldots, (m_p, n_p)\}^{\tilde{\kappa}} = (m, \{mn_1m, \ldots, mn_p m\}^{\hat{\kappa}})
$$

653 where $m = \{m_1, \ldots, m_p\}^{\kappa}$.

⁶⁵⁴ Proof. Let $S = \{(m_1, n_1), \ldots, (m_p, n_p)\}.$ Then if u is the perfect shuffle of 655 S, that is, if $u = S^n$, then $\tilde{\pi}(u) = S^{\kappa}$. Consider $\theta(u) = (v, w)$. We claim ω is the perfect shuffle of the set $S_1 = \{m_1, \ldots, m_p\}$. Indeed for any two ϵ_{557} points $x < y$ in dom(v), if suppose m_1 is not present, then between the same points in dom(u) the element (m_1, n_1) is not present. Therefore $v = S_1^{\eta}$ ⁶⁵⁸ points in dom(*u*) the element (m_1, n_1) is not present. Therefore $v = S_1^{\eta}$, and ⁶⁵⁹ $\pi(v) = S_1^{\kappa} = m$ (say). Furthermore for any point i in dom(v), the prefix $v_{\leq i}$ 660 and the suffix $v_{>i}$ are both perfect shuffles of S_1 ; so $\pi(v_{< i}) = \pi(v_{>i}) = m$. ⁶⁶¹ This implies w is the perfect shuffle of the set $S_2 = \{mn_1m, \ldots, mn_p m\}$. The 662 result follows as $\hat{\pi}(w) = S_2^{\kappa}$, and $\tilde{\pi} = (\pi(v), \hat{\pi}(w)) = (m, S_2^{\kappa})$. \Box ⁶⁶³ We now present an example of a semidirect product construction.

664 Example 9. Consider $M = U_1$ acting on $N = U_1$ with a trivial left action 665 and a non-trivial monoidal right action where $0 \in M$ maps everything in N 666 to $1 \in N$. The ⊛-algebra $S = U_1 \ltimes U_1$ is given in Figure [2.](#page-23-0) We write the ϵ_{667} element (i, j) as ij in this example.

		\cdot 11 10 00 01 τ τ^*			
		$\boxed{11}$ $\boxed{11}$ $\boxed{10}$ $\boxed{00}$ $\boxed{01}$ $\boxed{11}$ $\boxed{11}$		$\begin{bmatrix} 11 & 10 & 00 & 01 \\ 10 & 10 & 10 & 00 & 01 \\ 00 & 00 & 00 & 00 & 01 \\ 01 & 00 & 00 & 01 & 01 \\ 01 & 00 & 00 & 01 & 01 \end{bmatrix} \begin{bmatrix} 11 & 11 & 11 & 11 \\ 10 & 11 & 11 & 11 \\ 01 & 00 & 01 & 01 \\ 01 & 01 & 01 & 01 \end{bmatrix}$	11 if $S = \{11\}$
					$S^{\kappa} = \begin{cases} 01 & \text{if } S \cap \{00, 01\} \neq \emptyset \end{cases}$
					10 otherwise

Figure 2: The ⊛-algebra $S = U_1 \ltimes U_1$

668 Example 10. Let $\Sigma = \{a, b\}$. Consider the language L of all words which ϵ_{69} contains the letter b, and has a non-empty suffix purely consisting of a's, that δ_{σ} is, $L = \Sigma^{\circledast} \cdot \{b\} \cdot \Sigma^{\circledast} \cdot \{a\}^{\oplus}$. The morphism $h \colon \Sigma^{\oplus} \to \mathcal{S}$ such that $h(a) = 10$ $_{671}$ and $h(b) = 01$ recognizes L as $L = h^{-1}(00)$.

⁶⁷² 4.3. Block Product

 ϵ_{673} Let (M, π) and $(N, \hat{\pi})$ be two \bigoplus -semigroups. Recall that M^1 is the \bigotimes monoid associated to M. The set $N^{M^1 \times \bar{M}^1}$ of all functions from $M^1 \times M^1$ 674 675 into N also forms a ⊕-semigroup under the componentwise product. This \bigoplus - ϵ_{676} semigroup can be simply viewed as the direct product of $|M^1| \times |M^1|$ copies 677 of N. Reusing the operation $\hat{\pi}$ of $(N, \hat{\pi})$, we denote this \bigoplus -semigroup by $(K, \hat{\pi})$ with underlying set $K = N^{M^1 \times M^1}$ 678

The block product of M and N is denoted by $M\Box N$ and is the semidirect product $M \ltimes K$ (with underlying set $M \times K$) with respect to the *canonical* 'actions' (the following lemma proves that these are indeed compatible left and right actions): for $m \in M$ and $f \in K$,

$$
(mf)(m_1, m_2) = f(m_1m, m_2)
$$

$$
(fm)(m_1, m_2) = f(m_1, mm_2)
$$

679 Lemma 9. Given \oplus -semigroups (M, π) and $(N, \hat{\pi})$, consider the maps $M \times$ $N^{M^1\times M^1}\rightarrow N^{M^1\times M^1}$ defined by $(mf)(m_1,m_2)=f(m_1m,m_2)$ and $N^{M^1\times M^1}\times$

 $\begin{array}{ll} \hbox{1mm} & M \rightarrow N^{M^1 \times M^1} \hbox{ \emph{defined by }(fm)(m_1, m_2) = f(m_1, m m_2). \hbox{ \emph{These are compatible with the same time.} } \end{array}$ ⁶⁸² ble left and right actions of (M, π) on $(N^{M^1 \times M^1}, \hat{\pi})$. They are also monoidal 683 if M and N are both \circledast -monoids.

Proof. We focus only on the left action. Note that

$$
(m'(mf))(m_1, m_2) = (mf)(m_1m', m_2)
$$

= $f(m_1m'm, m_2)$
= $((m'm)f)(m_1, m_2)$

Hence $m'(mf) = (m'm)f$, thus proving the first axiom. For the second axiom, note

$$
(m(\prod_{i\in\alpha}f_i))(m_1, m_2) = (\prod_{i\in\alpha}f_i)(m_1m, m_2)
$$

=
$$
\prod_{i\in\alpha}(f_i(m_1m, m_2))
$$

=
$$
\prod_{i\in\alpha}(mf_i(m_1, m_2))
$$

=
$$
(\prod_{i\in\alpha}mf_i)(m_1, m_2)
$$

⁶⁸⁴ So $m(\prod_{i\in\alpha}f_i)=\prod_{i\in\alpha}mf_i$, thus proving the second axiom. If M has neutral 685 element 1, then $(1f)(m_1, m_2) = f(m_1, m_2)$ which means $1f = f$. If N has ϵ_{686} neutral element 1', then the neutral element g of K is the constant function 687 to 1'. Clearly, $mg = g$. Thus the left action is monoidal if (M, π) and $(N, \hat{\pi})$ ⁶⁸⁸ are ⊛-monoids.

The proof for the right action is symmetrical. We now establish the compatibility of these two actions.

$$
((mf)m')(m_1, m_2) = (mf)(m_1, m'm_2) = f(m_1m, m'm_2)
$$

$$
(m(fm'))(m_1, m_2) = (fm')(m_1m, m_2) = f(m_1m, m'm_2)
$$

689 Therefore $(mf)m' = m(fm')$, that is, the actions commute and are compat-⁶⁹⁰ ible. This completes the proof. \Box

⁶⁹¹ 4.4. Block Product Principle

⁶⁹² In this subsection, we state and prove the block product principle. Roughly ⁶⁹³ speaking the block product principle allows to express the formal languages ϵ_{694} recognized by the block product $M\Box N$ in terms of languages recognized by ϵ_{95} M and N.

 F ix a finite alphabet Σ. As Σ^{\oplus} is a free \oplus -semigroup, a morphism from Σ^{\oplus} 697 to $M\Box N = M \ltimes K$ is simply given (determined) by a map $h : \Sigma \to M \times K$. 698 Sometimes we'll denote its pointwise extension $\bar{h}: \Sigma^{\oplus} \to (M \times K)^{\oplus}$ also by h. 699 Further, composing this with the countable product $\tilde{\pi}$ of $M \ltimes K$ results into a *n*¹ morphism which, to a word $u \in \Sigma^{\oplus}$, associates the element $\tilde{\pi}(\bar{h}(u)) \in M \times K$. 701 This morphism may also be denoted by h (that is, $h(u)$ may simply equal $\tilde{\pi}(h(u))$. The context will make it clear as to which interpretation of 'h' ⁷⁰³ applies. These slight abuses of notations are used several times in what ⁷⁰⁴ follows in order to keep the notation simple and improve readability.

⁷⁰⁵ Similar to the finite words case, the block product principle over countable ⁷⁰⁶ words crucially utilises a sequential transducer induced by morphisms from ⁷⁰⁷ the free ⊕-semigroup.

Definition 4. Let $\varphi: \Sigma^{\oplus} \to (M, \pi)$ be a morphism. The sequential transducer σ_{φ} associated with this morphism is a domain-preserving letter-toletter transducer of type $\sigma_{\varphi} \colon \Sigma^{\oplus} \to (M^1 \times \Sigma \times M^1)^{\oplus}$ and is defined as follows. For any word $u \in \Sigma^{\oplus}$, and for any $x \in \text{dom}(u)$,

$$
\sigma_{\varphi}(u)[x] = (\varphi(u_{< x}), u[x], \varphi(u_{> x}))
$$

⁷⁰⁸ As mentioned earlier dom $(\sigma_{\varphi}(u)) = \text{dom}(u)$.

 709 Remark 3. If the prefix $u_{< x}$ (resp. suffix $u_{> x}$) is the empty word in Defi-⁷¹⁰ nition [4,](#page-25-0) then we use the neutral element of $M¹$ in place of $\varphi(u_{\leq x})$ (resp. 711 $\varphi(u_{>x})$).

⁷¹² Next, given a morphism from a free ⊕-semigroup into a block product ⁷¹³ ⊕-semigroup, we define two naturally arising morphisms into the individual ⁷¹⁴ ⊕-semigroups of the block product.

⁷¹⁵ **Definition 5.** Let $h : \Sigma^{\oplus} \to M\square N$ be a morphism and let $(m_a, f_a) = h(a)$ ⁷¹⁶ for each $a \in \Sigma$. We define the map/morphism $h_1 : \Sigma \to M$ by letting $h_1(a) =$ m_a for each letter a. We also define the map/morphism $h_2: (M^1 \times \Sigma \times M^1) \rightarrow$ ⁷¹⁸ N as: for $(m_1, a, m_2) \in (M^1 \times \Sigma \times M^1)$, we have $h_2((m_1, a, m_2)) = f_a(m_1, m_2)$. Going ahead, given a word $u' \in (M^1 \times \Sigma \times M^1)^{\oplus}$ and $m_1, m_2 \in M$, we η_{10} define $m_1 u' m_2$ to be the word (with the same domain as u') such that for a γ_{21} position x with $u'[x] = (m'_1, a, m'_2), (m_1 u' m_2)[x] = (m_1 m'_1, a, m'_2 m_2).$

⁷²² Now we are ready to state a key technical lemma which will help us ⁷²³ establish the block product principle.

Lemma 10. Consider a morphism $h: \Sigma^{\oplus} \to M \square N = M \ltimes K$. For $u \in \Sigma^{\oplus}$, \forall we have $h(u) = (m, f)$ if and only if $h_1(u) = m$ and for all $m_1, m_2 \in M^1$, τ_{126} we have $h_2(m_1\sigma(u)m_2) = f(m_1, m_2)$ where σ is the sequential transducer 727 associated to h_1 .

⁷²⁸ Proof. Fix $u \in \Sigma^{\oplus}$ and $u' = \sigma(u)$. Let $h(u) \in (M \times K)^{\oplus}$ be the image ⁷²⁹ of the pointwise extension of h applied to u. The words $h_1(u) \in M^{\oplus}$ and ⁷³⁰ $h_2(u') \in N^{\oplus}$ are defined similarly. Observe that, for a position x of u, with $u[x] = a$ and $h(a) = (m_a, f_a), h(u)[x] = (m_a, f_a), h_1(u)[x] = m_a, u'[x] =$ $h_1(u_{\leq x}), a, h_1(u_{>x})$ and $h_2(u')[x] = f_a(h_1(u_{\leq x}), h_1(u_{>x})).$ See Figure [3.](#page-26-0)

	u :	x $\ldots a \ldots$	\leadsto	(evaluation)
$h:\Sigma\to M\Box N$	h(u):	$\ldots (m_a, f_a) \ldots$		(m, f)
$h_1: \Sigma \to M$	$h_1(u):$	$\ldots m_a \ldots$		m
$\sigma : \Sigma^{\oplus} \to (M^1 \times \Sigma \times M^1)^{\oplus}$	$u' = \sigma(u)$:	$\ldots \vert h_1(u_{< x}), a, h_1(u_{> x}) \vert \ldots$		
$h_2: (M^1 \times \Sigma \times M^1) \rightarrow N$	$h_2(u')$:	$ f_a(h_1(u_{< x}), h_1(u_{> x})) $		f(1,1)

Figure 3: The block product operational view

Consider the map $\theta : (M \times K)^{\oplus} \to M^{\oplus} \times K^{\oplus}$ from Lemma [3](#page-20-1) (with ⁷³⁴ K playing the role of N in the statement). Let $\theta(h(u)) = (v, w)$. Observe that $v \in M^{\oplus}$ and $w \in K^{\oplus}$. It is straightforward to check that $v = h_1(u)$. 736 Further, by the definition of θ , for a position x of u, with $h(u)[x] = (m_a, f_a)$, 737 $w[x] = h_1(u_{\leq x}) f_a h_1(u_{\geq x}).$

Now we relate the word $w \in K^{\oplus}$ with $\sigma(u) \in (M^1 \times \Sigma \times M^1)^{\oplus}$. Towards ⁷³⁹ this, consider the projection morphisms: for $m_1, m_2 \in M^1$, $\Pi_{m_1, m_2}: K \to N$ ⁷⁴⁰ defined as $\Pi_{m_1,m_2}(g) = g(m_1, m_2)$. As expected, the pointwise extensions of ⁷⁴¹ Π_{m_1,m_2} are also denoted by Π_{m_1,m_2} .

For further analysis, fix a choice of $m_1, m_2 \in M^1$. Let x be a po- α_1 is sition with $u[x] = a$ and $h(a) = (m_a, f_a)$. As observed earlier $w[x] = a$ $h_1(u_{<} x) f_a h_1(u_{>} x) \in K$, and $u'[x] = (h_1(u_{<} x), a, h_1(u_{>} x)) \in M^1 \times \Sigma \times M^1$. 745 Clearly $m_1u'm_2[x] = (m_1h_1(u_{< x}), a, h_1(u_{> x})m_2).$

⁷⁴⁶ We proceed further with some simple calculations.

$$
\Pi_{m_1,m_2}(w[x]) = (h_1(u_{< x}) f_a h_1(u_{> x})) (m_1, m_2)
$$

= $f_a(m_1 h_1(u_{< x}), h_1(u_{> x}) m_2)$

747

$$
h_2(m_1u'm_2[x]) = h_2((m_1h_1(u_{<}), a, h_1(u_{>})m_2))
$$

= $f_a(m_1h_1(u_{<}), h_1(u_{>})m_2)$

⁷⁴⁸ This reveals that for each position $x, \Pi_{m_1,m_2}(w[x]) = h_2(m_1u'm_2[x])$. Thanks to the fact that both $\Pi_{m_1,m_2}(w)$ and $h_2(m_1u'm_2)$ are defined pointwise, we ⁷⁵⁰ have $\Pi_{m_1,m_2}(w) = h_2(m_1u'm_2)$. We let f denote the evaluation of w in K ⁷⁵¹ and exploit the fact that both Π_{m_1,m_2} and h_2 are morphisms to conclude τ ⁵² that, for $m_1, m_2 \in M$, $f(m_1, m_2) = h_2(m_1 u' m_2) \in N$.

 T_{753} With $h_1(u) = m$, the proof of the proposition is now immediate by Defi-754 nition [3](#page-20-2) which asserts that $h(u) = (m, f)$. \Box

⁷⁵⁵ We now use this lemma to derive the following result often referred to ⁷⁵⁶ as the block product principle (see [\[23,](#page-50-6) [24\]](#page-50-7) for the related wreath product ⁷⁵⁷ principle in finite case).

758 **Theorem 5** (Block Product Principle). Let $L \subseteq \Sigma^{\oplus}$ be recognized by h: ⁷⁵⁹ $\Sigma^{\oplus} \to M\square N$ via a subset F. Let $h_1: \Sigma^{\oplus} \to M$ be the induced projection ⁷⁶⁰ morphism, and let $\sigma \colon \Sigma^\oplus \to (M^1 \times \Sigma \times M^1)^\oplus$ be the sequential letter-to- $_{761}$ letter transducer associated to h_1 . Then L can be expressed as a finite union

Figure 4: $\theta : (M \times K)^{\circledast} \to M^{\circledast} \times K^{\circledast}$ and $\theta(u) = (v, w)$

of languages of the form $L_1 \cap (\bigcap$ i,j ⁷⁶² of languages of the form $L_1 \cap (\bigcap \sigma^{-1}(L_{ij}))$ where L_1 and L_{ij} are recognized σ_{53} by M and N respectively, for $1 \leq i, j \leq |M^1|$.

Conversely let $g_1: \Sigma^{\oplus} \to P$ *be a morphism, and let* $\theta: \Sigma^{\oplus} \to (P^1 \times \Sigma \times$ ⁷⁶⁵ $P^1)^\oplus$ be the letter-to-letter transducer associated to it. If $X\subseteq (P^1\times \Sigma\times P^1)^\oplus$

⁷⁶⁶ is recognized by some \oplus -semigroup Q, then $\theta^{-1}(X)$ is recognized by $P\square Q$.

 $Proof.$ Consider an element $(m, f) \in M\square N$. By Lemma [10,](#page-26-1) for $u \in \Sigma^{\oplus}$, \mathcal{F}_{768} $h(u) = (m, f)$ iff $h_1(u) = m$ and $h_2(m_1\sigma(u)m_2) = f(m_1, m_2)$ for all $m_1, m_2 \in \mathbb{R}$ 769 M^1 .

Next, for $1 \le i, j \le |M^1|$, we define the maps/morphisms $h_{ij} : (M^1 \times \Sigma \times$ M^{1} $\to N$ as follows: $h_{ij}((m_1, a, m_2)) = h_2((m_i m_1, a, m_2 m_j))$. It is easy to τ_{12} see that, for any word $u' \in (M^1 \times \Sigma \times M^1)^{\oplus}, h_{ij}(u') = h_2(m_i u' m_j).$

As a consequence, we get

$$
L = \bigcup_{(m,f)\in F} \left(h_1^{-1}(m) \cap \left(\bigcap_{i,j} \sigma^{-1}(h_{ij}^{-1}(f(m_i, m_j))) \right) \right)
$$

⁷⁷³ This completes the proof for one direction.

For the converse, suppose $X \subseteq (P^1 \times \Sigma \times P^1)^{\oplus}$ is recognized by some morphism $g_2: (P^1 \times \Sigma \times P^1)^\oplus \to Q$ via subset $F' \subseteq Q$. Consider the map/morphism $g: \Sigma^{\oplus} \to P \square Q$ defined by $g(a) = (g_1(a), \{(m_1, m_2) \mapsto$ $g_2(m_1, a, m_2)$. For any word $u \in \Sigma^{\oplus}$, we know $u \in \theta^{-1}(X)$ iff $\theta(u) \in X$ iff $g_2(\theta(u)) \in F'$. It is easy to verify that the map/morphism g_2 induced by g (cf. Definition [5\)](#page-25-1) is same as g_2 . Therefore, by Lemma [10,](#page-26-1) $g_2(\theta(u)) = q(1, 1)$ if $g(u) = (p, q)$. As a consequence, we get

$$
X = g^{-1}(\{(p, q) \in P \Box Q \mid q(1, 1) \in F'\})
$$

⁷⁷⁴ This completes the proof.

 775 Example 11. Let $\Sigma = \{a, b\}$. Recall (see Example [5\)](#page-9-0) that U_1 recognizes the 776 language L_1 of words in which there is at least one occurence of a. We show $_{777}$ that $U_1 \square U_1$ recognizes the language L of words where there is exactly one ⁷⁷⁸ occurence of a. Let $h: \Sigma^{\oplus} \to U_1$ be the morphism recognizing the language ⁷⁷⁹ L_1 as $L_1 = h^{-1}(0)$, and let $\sigma: \Sigma^{\oplus} \to (U_1 \times \Sigma \times U_1)^{\oplus}$ be the canonical 780 transdsucer associated to it. If $\sigma(w)[i] = (1, a, 1)$, then by definition of τ_{31} the transducer, we can say $w[i] = a, w_{\leq i} \notin L_1$ and $w_{>i} \notin L_1$. Consider ⁷⁸² the language $L_2 \subseteq (U_1 \times \Sigma \times U_1)^{\oplus}$ of words in which there is at least one

 \Box

 σ ₇₈₃ occurence of the letter $(1, a, 1)$ (note that by the behaviour of σ , there can be 784 at most one such letter in the transducer output). Clearly L_2 is recognized by ⁷⁸⁵ U_1 and $L = \sigma^{-1}(L_2)$. Therefore by proposition [5,](#page-27-0) L is recognized by $U_1 \square U_1$.

 786 5. Block Product Closures and FO² Logic

 Having set up the block product operation, we now present a characteri- α ⁷⁸⁸ zation using it. The two variable fragment of first order logic, FO^2 , has been studied extensively, particularly in the context of finite words. A block prod-₇₉₀ uct characterization in terms of U_1 s is established in [\[16\]](#page-49-6) over finite words. In this section, we show that the countable counterpart of the result holds as well. Before stating the characterization, we need to introduce some closures of block product iterations, and their properties.

⁷⁹⁴ 5.1. Iterated and Weakly Iterated Block Product

⁷⁹⁵ Block product of ⊕-semigroup is not associative. This is easily evi- τ_{196} denced by a cardinality argument, for instance between $(U_1 \square U_1) \square U_1$ and $U_1 \Box (U_1 \Box U_1)$. Thus given a list of \bigoplus -semigroups, the order of product (equiv-⁷⁹⁸ alently the nesting of brackets) varies the resulting structure.

⁷⁹⁹ We define two particular nestings which will be of interest to us. For 800 a set P of \oplus -semigroups, an *iterated block product* is defined inductively as ⁸⁰¹ follows:

 802 1. S is an iterated block product for any $S \in P$.

 $2.$ If S' is an iterated block product, then $S' \square S$ is an iterated block prod- $_{804}$ uct for any $S \in P$.

⁸⁰⁵ The set of all iterated block products of a set P is denoted by \square ^{*}P. For 806 a singleton set, we drop the set notation. For instance, $(U_1 \square U_1) \square U_1 \in$ ⁸⁰⁷ $\Box^* U_1$. For a sequence of \bigoplus -semigroups S_1, \ldots, S_k , we denote its iterated 808 block product $\left(\ldots\left((S_1 \square S_2) \square S_3\right) \ldots\right) \square S_k$ by $\square (S_1, S_2, \ldots, S_k)$.

 The following lemma states that direct product of iterated block products is simulated by an iterated block product of the same constituents. The proof follows the corresponding one for classical semigroups (see [\[15,](#page-49-5) Appendix $_{812}$ A.4.]).

Lemma 11. If $M_1 \prec \Box(S_1, \ldots, S_k)$ and $M_2 \prec \Box(S'_1, \ldots, S'_l)$, then

 $M_1 \times M_2 \prec \Box(S_1, \ldots, S_k, S'_1, \ldots, S'_l)$

 813 The other important nesting is *weakly iterated block product*. Given a set P ⁸¹⁴ of ⊕-semigroups, it is defined inductively as follows:

815 1. S is a weakly iterated block product for any $S \in P$.

816 2. If S' is a weakly iterated block product, then $S\Box S'$ is a weakly iterated 817 block product for any $S \in P$.

 818 The set of all weakly iterated block products of a set P is denoted by ⁸¹⁹ $\Box^*_{w}P$. For instance, $U_1 \Box (U_1 \Box U_1) \in \Box^*_{w}U_1$. For a sequence of \oplus -semigroups 820 S_1, \ldots, S_k , we denote $S_1 \square (S_2 \square \ldots (S_{k-1} \square S_k) \ldots)$, its weakly iterated block 821 product, by $\Box_w(S_1, S_2, \ldots, S_k)$.

Lemma 12. For any \oplus -semigroups S_1, \ldots, S_k , the following holds

 $(S_1 \times \ldots \times S_{k-1}) \square S_k \prec \square_w(S_1, \ldots, S_k)$

Proof. This follows from a simple inductive argument on k. For $k = 3$, consider the map $h: (S_1 \times S_2) \square S_3 \rightarrow S_1 \square (S_2 \square S_3)$ defined by: for any $((s_1, s_2), f) \in (S_1 \times S_2) \square S_3$, its image is (s_1, f') where for any $s, s' \in S_1$, and any $s'_2, s''_2 \in S_2$

$$
f'(s,s') = (s_2, \{(s_2',s_2'') \mapsto f((s,s_2'),(s',s_2''))\})
$$

822 It can be verified that h is an injective morphism, thus showing $(S_1 \times S_2) \square S_3$ 823 is isomorphic to a sub-⊛-algebra of $\square_w(S_1, S_2, S_3)$.

So for $k \leq 3$, the statement holds. Assuming it holds for $k - 1$, we get

$$
(S_1 \times \ldots \times S_{k-1}) \square S_k \prec (S_1 \times \ldots S_{k-2}) \square (S_{k-1} \square S_k)
$$

$$
\prec \square_w (S_1, \ldots, S_{k-2}, (S_{k-1} \square S_k))
$$

$$
= \square_w (S_1, \ldots, S_k)
$$

⁸²⁴ This completes the proof.

⁸²⁵ 5.2. FO with two variables

We now consider the two variable fragment FO^2 of first order logic. Over finite words, $FO²$ can talk about occurrence of letters and also about the order in which they appear. Over countable linear orderings, it can also say that there is no maximum position. For example, the following formula states that every position is labelled by a and there is no maximum position.

$$
(\forall x \; \exists y \; x < y) \land (\forall x \; a(x))
$$

 \Box

 α_{26} Analogously, FO² can also talk about words with no minimum position. ⁸²⁷ However, the two variable fragment is not as expressive as full first order. 828 FO² satisfies a downward property (similar to Löwenheim-Skolem downward ϵ_{229} theorem for first order logic): a satisfiable FO² formula has a scattered satis-⁸³⁰ fying model [\[11\]](#page-49-1). Therefore, the language in Example [7,](#page-10-2) which says the linear ⁸³¹ ordering is dense and has at least two distinct positions, is not definable in $SO²$. We now present a decompositional characterization of FO² languages. 833 The proof follows the one for finite words in [\[16\]](#page-49-6).

834 Theorem 6. A language is definable in FO² if and only if it is recognised by 835 a weakly iterated block product of U_1 .

Proof. The right to left inclusion is via induction on the number of blocks of U_1 s. First, observe that languages recognized by a single U_1 can be defined in FO² . For the induction step, we utilise Theorem [5,](#page-27-0) the block product principle. Let the hypothesis hold for algebra $M \in \Box_{w}^{*} \mathcal{U}_{1}$. We show that a language L recognized by some morphism $h : \Sigma \to U_1 \square M$ can be defined in FO². Let $\sigma : \Sigma^{\oplus} \to (\mathbf{U}_1 \times \Sigma \times \mathbf{U}_1)^{\oplus}$ be the transducer associated with the induced morphism $h_1 : \Sigma \to U_1$. From the block product principle, L can be expressed as a finite boolean combination of languages of the form L_1 and $\sigma^{-1}(L_2)$ where L_1 and L_2 are recognized by U_1 and M respectively. By the induction hypothesis both L_1 and L_2 are FO² definable. So it suffices to show that for an FO² language L_2 over the alphabet $(U_1 \times \Sigma \times U_1)$ the language $\sigma^{-1}(L_2)$ is also FO² definable. This can be shown via structural induction on formula over the decorated alphabet; the base case is the nontrivial case. The following formula accepts $\sigma^{-1}(L_2)$ if L_2 is defined by the formula $(0, a, 1)(x)$.

$$
a(x) \land (\exists y \ y < x \land \bigvee_{h_1(b)=0} b(y)) \land (\forall y \ y > x \Rightarrow \bigvee_{h_1(c)=1} c(y))
$$

⁸³⁶ Note that we used only two variables for the above translation. The ⁸³⁷ other base cases are similar. We apply this translation inductively for other ⁸³⁸ formulas.

⁸³⁹ Now we show the left to right inclusion of the proof. First we note 840 the following observation. Consider $\wp(\Sigma)$, the powerset of the alphabet, as a ⊛-monoid where any word $u \in (\varphi(\Sigma))^{\oplus}$ is evaluated to the set of 842 letters present in u. Notice that $\wp(\Sigma)$ is essentially the direct product ⁸⁴³ of $|\Sigma|$ -many U₁s. There exists a canonical morphism $g : \Sigma^{\oplus} \to \varphi(\Sigma)$

⁸⁴⁴ such that $q(w) = \{a \mid \text{the letter } a \text{ occurs in } w\}$. The transducer associated ⁸⁴⁵ with g is $\sigma : \Sigma^{\oplus} \to (\wp(\Sigma) \times \Sigma \times \wp(\Sigma))^{\oplus}$ where, for a word w, we have 846 $\sigma(w)[i] = (g(w_{\leq i}), w[i], g(w_{\geq i}))$ for every position i in dom(w). Observe that ⁸⁴⁷ the word $\sigma(w)$ carries, at every position i, the information about the set of 848 letters occuring to the left (as well as right) of i in w .

 $\frac{1}{6}$ It is shown in [\[16\]](#page-49-6) that FO² has a "normal form" where the quantifier at 850 the maximum depth along with its scope is of the form $\exists x(a(x) \land x \leq y)$ or \mathscr{F}_{351} $\exists x \ (a(x) \land x > y)$. Our proof is via induction on the quantifier depth and ⁸⁵² the number of quantifiers at the maximum depth.

 \cos Consider a FO² sentence ϕ in its normal form. Consider a subformula $\exists x(a(x) \land x \leq y)$ at its maximum quantifier depth. We convert the formula ϕ ⁸⁵⁵ into a formula ϕ' over $\wp(\Sigma) \times \Sigma \times \wp(\Sigma)$ as follows. We substitute the chosen 856 subformula $\exists x(a(x) \land x < y)$ by a disjunction of letter formulas $(\Sigma_1, b, \Sigma_2)(y)$ 857 where $\Sigma_1, \Sigma_2 \subseteq \Sigma$, $b \in \Sigma$, and $a \in \Sigma_1$. All remaining instances of letter ⁸⁵⁸ formula $c(x)$ is substituted by disjunction of letter formulas $(\Sigma'_1, c, \Sigma'_2)(x)$ ⁸⁵⁹ where $\Sigma'_1, \Sigma'_2 \subseteq \Sigma$. It is easy to verify by structural induction on FO² formulas ⁸⁶⁰ that $w \models \phi$ if and only if $\sigma(w) \models \phi'$. In ϕ' , either the quantifier depth has ⁸⁶¹ gone down or the number of quantifiers at the maximum depth. Therefore by ⁸⁶² induction hypothesis, $L(\phi')$ is recognized by $M \in \Box^*_{w}U_1$. Note that $L(\phi) =$ ⁸⁶³ $\sigma^{-1}(L(\phi'))$. By Proposition [5,](#page-27-0) we get $L(\phi)$ is recognized by $\wp(\Sigma)\Box M$ which $_{864}$ by Lemma [12](#page-30-0) is a weakly iterated block product of U_1 s. \Box

865 6. First Order Logic with Infinitary Quantifiers - $FO[\infty]$

 We now move on to characterizing higher classes of logics like first order logic. In the classical setting, FO has a nice block product based decom- positional characterization (see [\[15\]](#page-49-5)). Our next theorem (Theorem [7\)](#page-32-1) shows that a similar characterization holds for FO interpreted over countable words. δ_{870} Next we introduce an extended version of first order logic, namely $FO[\infty]$, that admits nice decompositional characterization using block products. In $\frac{872}{2}$ fact, the characterization results for FO[∞] subsume those for FO and its single variable fragment. In this section, our aim is to introduce this new $_{874}$ logic, explain its motivation, and also place it in terms of well studied log- ics over countable words. We first provide block product characterization of ⊕-semigroups recognizing FO languages over linear countable orderings.

 \mathbf{S}_{377} Theorem 7. A language over countable words is definable in FO if and only δ ₈₇₈ if it is recognized by an iterated block product of U_1 s.

⁸⁷⁹ We skip the proof here since this theorem can be seen as a corollary of ⁸⁸⁰ Theorem [10](#page-41-0) in the next section.

 Our results for FO and its syntactic fragments (see Theorem [3,](#page-12-0) The- orem [4,](#page-15-0) Theorem [6](#page-31-0) and Theorem [7](#page-32-1)) closely resemble the corresponding results over finite words. This can be attributed to the limited capability of ⁸⁸⁴ the operators τ , τ^* and κ in the syntactic \oplus -algebra corresponding to FO languages. For instance, FO cannot define the language of words with infinite 886 number of a's $[13]$ — a natural property in the context of countable words. The existential quantifier of FO is a threshold counting quantifier; it says there exists at least one position satisfying a property. Using multiple such first-order quantifiers, FO can count up to any finite constant but not more. Over countable words, it is natural to ask for stronger threshold quantifiers. We introduce natural infinitary extensions of the existential quantifier.

 \mathcal{L}_0 Let \mathcal{I}_0 be the set of all non-empty finite orderings. For any number 893 $n \in \mathbb{N}$, we define the set \mathcal{I}_n to be the set of all non-empty orderings of the ⁸⁹⁴ form $\sum_{i\in\mathbb{Z}}\alpha_i$ where $\alpha_i\in\mathcal{I}_{n-1}\cup\{\varepsilon\}$ and is closed under finite sum. We 895 define the *infinitary rank* (or simply *rank*) of a linear ordering α (denoted by 896 ∞ -rank (α) as the least n (if it exists) where $\alpha \in \mathcal{I}_n$. If there is no such n we 897 say that the rank is infinite. For example, ∞ -rank $(\omega) = \infty$ -rank $(\omega + \omega) =$ ⁸⁹⁸ ∞ -rank $(\omega^* + \omega) = 1$, ∞ -rank $(\omega^2) = \infty$ -rank $(\omega^2 + \omega^*) = 2$, and the rank of 899 $\eta = (\mathbb{Q}, \lt)$ is infinite.

We introduce the logic $FO[\infty]$ extending FO with infinitary quantifiers:

$$
\varphi := a(x) | x < y | \varphi \vee \varphi | \neg \varphi | \exists x \varphi | \exists^{\infty} x \varphi | \dots | \exists^{\infty} x \varphi | \dots \quad n \in \mathbb{N}
$$

⁹⁰⁰ Note that all the variables are first order and they are interpreted as positions, ⁹⁰¹ that is, elements of the underlying linear ordering. More precisely, models \mathfrak{so}_2 of FO[∞] formula are of the form w, \mathcal{A} where w is a countable word over 903 Σ and A is an assignment of free (or unquantified) variables to positions in ⁹⁰⁴ w. The semantics of the new infinitary quantifier $\exists^{\infty_n} x$ is: for a word w ⁹⁰⁵ and an assignment A, we say $w, A \models \exists^{\infty_n} x \varphi$ if there exists a subordering 906 $X \subseteq \text{dom}(w)$ such that ∞ -rank $(X) = n$ and $w, \mathcal{A}[x = i] \models \varphi$ for all $i \in X$. 907 Here $\mathcal{A}[x=i]$ denotes an assignment \mathcal{A}' which is defined as: $\mathcal{A}'(x)=i$ and 908 $\mathcal{A}'(y) = \mathcal{A}(y)$ for all $y \neq x$. For example, $\exists^{\infty} \circ x \varphi$ is equivalent to $\exists x \varphi$ ⁹⁰⁹ since both formulas are true if and only if there is at least one satisfying 910 assignment for x. The rest of the semantics is standard.

The logic $FO[(\infty_j)_{j\leq n}]$ denotes the fragment containing only the infinitary quantifiers $\exists^{\infty_j} x$ for all $j \leq n$. Clearly the following natural hierarchy is maintained among the logics:

$$
\mathrm{FO} = \mathrm{FO}[(\infty_j)_{j \leq 0}] \subseteq \mathrm{FO}[(\infty_j)_{j \leq 1}] \subseteq \mathrm{FO}[(\infty_j)_{j \leq 2}] \subseteq \dots
$$

⁹¹¹ We also denote by $\mathrm{FO}^1[(\infty_j)_{j\leq n}]$ the corresponding one variable fragment of 912 $\text{FO}[(\infty_i)_{i \leq n}].$

913 Example 12. The formula $\exists^{\infty_1} x \ a(x)$ denotes the set of all countable words ⁹¹⁴ with infinitely many positions labelled a. Since FO cannot express this, it 915 shows $FO \subsetneq FO[(\infty_i)_{i \leq 1}].$

916 Example 13. Consider the language L of all words with $a^{\omega}a^{\omega^*}$ as a factor. $\text{suppose we have a formula } \inf(x, y)$ that can express that there are infinitely 918 many positions between x and y (assuming $x < y$). We define L using this ⁹¹⁹ formula as follows. Guess two 'endpoints' x and y of the factor $a^{\omega}a^{\omega^*}$. We ⁹²⁰ express the following properties for the positions in this non-empty interval: $_{921}$ (1) every position is labelled a, (2) every position is finite distance away ⁹²² from one endpoint and infinite distance away from the other, (3) the points ⁹²³ that are finite distance away from the left endpoint have no maximum, and 924 (4) the points that are finite distance away from the right endpoint have no ⁹²⁵ minimum.

$$
\text{926} \qquad 1. \ \psi_1(x, y) ::= \forall z \ x \leq z \leq y \Rightarrow a(z)
$$

927 2. $\psi_2(x, y) ::= \forall z \ x \le z \le y \Rightarrow (\neg \inf(x, z) \land \inf(z, y)) \lor (\inf(x, z) \land \neg \inf(z, z))$ 928 $\neg \text{inf}(z, y)$

$$
\text{929} \qquad 3. \ \ \psi_3(x,y) ::= \forall z \ (x < z < y \land \neg \text{inf}(x,z)) \Rightarrow \exists z' \ z < z' < y \land \neg \text{inf}(x,z')
$$

$$
\text{930} \qquad 4. \ \ \psi_4(x,y) ::= \forall z \ (x < z < y \land \neg \text{inf}(z,y)) \Rightarrow \exists z' \ x < z' < z \land \neg \text{inf}(z',y)
$$

931 The sentence $\exists x \exists y \ x \leq y \land \psi_1(x, y) \land \psi_2(x, y) \land \psi_3(x, y) \land \psi_4(x, y)$ defines the 932 language L. It is easy to check that $\exists^{\infty_1} z \ x < z < y$ expresses the property 933 inf (x, y) . Therefore L is FO[∞] definable.

We now place the logic $FO[\infty]$ amidst the logics studied in the context ⁹³⁵ of countable words [\[10,](#page-49-0) [19\]](#page-50-2). The logic FO[cut] is an extension of FO that ⁹³⁶ allows quantification over downward closed sets, also known as Dedekind-937 cuts. Syntactically, we write $\exists_{cut} X$ to existentially quantify a set X where 938 X is downward closed because of the quantifier. The logic WMSO allows 939 quantification over finite subsets of positions. We write $\forall_{fin} X$ to universally 940 quantify over finite sets; here X is a finite set because of the quantifier.

941 Example 14. Let α be an ordering which contains an ω sequence of positions 942 $(a_i)_{i\in\mathbb{N}}$. Now consider the set $X = \{x \in \alpha \mid x < a_i \text{ for some } i \in \mathbb{N}\}.$ ⁹⁴³ It is clearly a downward closed set and thus defines a cut. Furthermore 944 this set has no maximum position, since for any $x \in X$, if $x < a_i$ then 945 there exists $z \in X$ where $x < a_i < z < a_{i+1}$. Therefore we have shown that any ordering containing an ω sequence of positions contains a right-947 open cut (that is, the downward closed set corresponding to the cut has no ⁹⁴⁸ maximum element). Conversely, if an ordering contains a right-open cut, 949 then clearly it has an ω sequence of positions. Therefore the FO[cut] formula 950 $\exists_{cut} X \exists x X(x) \land \forall y X(y) \Rightarrow \exists z X(z) \land y \leq z$ describes the language of all 951 countable words containing an ω sequence of positions.

952 Example 15. Recall from Example [13](#page-34-0) the formula $\inf(x, y)$ that expresses 953 there are infinitely many positions between x and y (assuming $x < y$). It was ⁹⁵⁴ shown that the language L of all words with $a^{\omega}a^{\omega^*}$ as a factor is definable 955 if $\inf(x, y)$ is definable. Now note that $\inf(x, y)$ can be defined in WMSO 956 as $\forall_{fin} X \exists z \ x \leq z \leq y \land \neg X(z)$. Therefore L is WMSO definable. It is 957 also possible to define $\inf(x, y)$ in FO[cut] because if there are infinitely many positions between x and y then there must be an ω sequence or an ω^* 958 ⁹⁵⁹ sequence of positions in this interval, and FO[cut] can guess an appropriate 960 cut between x and y to check this. So L is also FO[cut] definable.

⁹⁶¹ In fact, we claim that both first order logic with cuts (FO[cut]) and weak ⁹⁶² monadic second order logic (WMSO) can define all the languages definable 963 in FO $|\infty|$.

Theorem 8. FO[∞] ⊂ FO[cut] ∩ WMSO ^{[2](#page-35-1)} 964

Proof. We first show by structural induction that there is an equivalent WMSO formula for any $FO[\infty]$ formula. It is easy to observe that the hypothesis holds for the atomic case, first order quantification and boolean combinations. Let us consider the formula $\phi = \exists^{\infty_k} x \ \psi(x)$. By our inductive hypothesis there is a WMSO formula $\psi(x)$ equivalent to $\psi(x)$. We show that the WMSO formula Ψ_k inductively defined is equivalent to ϕ : Let $\Psi_0 ::= \exists x \; \psi(x)$ and

 $\Psi_n ::=$ For any finite set $X = \{x_1, \ldots, x_k\}$, one of the factors $[-,x_1], \ldots$, $[x_i, x_{i+1}], \ldots, [x_k, -]$ can be split into at least two parts each satisfying Ψ_{n-1}

²Here, FO[∞], FO[cut], WMSO denote the languages defined by the respective logic.

This can be expressed in WMSO. Note notempty $(X) = \exists x X(x)$ says that X is not empty set. Let $consec(X, x, y)$ express that $x, y \in X$ and $x < y$ and there is no $z \in X$ such that $x < z < y$; that is x and y are consecutive in set X. Let $min(X, x)$ denote that x is the minimum position in X, and $max(X, x)$ denote that x is the maximum position in X. Then we define Ψ_n to be

$$
\begin{aligned} &\forall_{fin}X\;\Big(\texttt{notempty}(X)\Rightarrow\\ &\exists x,y,z\;\texttt{consec}(X,x,y)\wedge xx,z,z,x,z]\big)\Big) \end{aligned}
$$

965 We claim that Ψ_n is satisfied by all words where the ψ -labelled set of positions 966 α has ∞ -ran $k(\alpha) \geq n$. It is clearly true for the base case Ψ_0 . Assume the \mathcal{P}_{967} hypothesis is true for all $j < n$. The formula Ψ_n says that for any finite 968 number of partitions $\alpha_1, \alpha_2, \ldots, \alpha_k$, of the ψ -labelled set of positions α , there 969 is at least one α_i that can be split into two parts containing ψ -labelled set of ⁹⁷⁰ positions α¹_i and α²_i such that ∞-*rank*(α¹_i) ≥ n − 1 and ∞-*rank*(α²_i) ≥ n − 1. 971 In short, finite partitioning of ψ -labelled set of positions with rank $n-1$ is 972 not possible or ∞ -ran $k(\alpha) \geq n$. Therefore the formula Ψ_k is equivalent to 973 the formula ϕ .

Next we give an FO[cut] formula equivalent to an FO[∞] formula. Like in the previous proof, let us look at the case $\phi = \exists^{\infty_k} x \ \psi(x)$ where $\psi(x)$ is equivalent to an FO[cut] formula $\hat{\psi}(x)$. We show ϕ is equivalent to Φ_k where Φ_n is inductively defined as: $\Phi_0 ::= \exists x \; \psi(x)$ and Φ_n is

> There is a cut towards which there is an ω (or ω^*) sequence of factors each satisfying Φ_{n-1}

Let X be a non-empty cut. We give an FO[cut] formula omegaseq(X) that says there is an ω sequence of factors satisfying Φ_{n-1} approaching towards the cut X .

$$
\text{omega}(\text{X}) ::= \forall y \ X(y) \Rightarrow \exists z \ X(z) \land y < z \land \Phi_{n-1} [> y, < z]
$$

The formula says there is an ω sequence of positions such that each factor between consecutive positions contains ψ -labelled subsequence of rank \geq $n-1$. Similarly, there is a formula omegaseq^{*}(X) that state the existence of

an ω^* sequence approaching the cut. The formula Φ_n will guess this cut and verify the ω or ω^* sequence is non-empty as given below.

$$
\Phi_n ::= \exists_{cut} X \; \Big(\exists x \; X(x) \land \texttt{omega}(X) \Big) \; \lor \; \Big(\exists x \; \neg X(x) \land \texttt{omega}(x)^*(X) \Big)
$$

⁹⁷⁴ Inductively arguing about the correctness of the formula, it's quite clear that 975 Φ_n expresses existence of set of ψ -labelled positions of rank $\geq n$. \Box

976 7. Product Decompositions for $FO[\infty]$

 We now apply our algebraic tools to give decompositional characteriza- $\frac{978}{978}$ tions of FO[∞] and its one variable fragments. Our approach uses the block product principle that we developed in subsection [4.4](#page-25-2) to directly show equiv- alence of languages definable in some logic and languages recognized by some family of ⊕-semigroups.

⁹⁸² We first identify a family of simple ⊛-algebras that will help characterize 983 the logic. For $n \geq 0$, let $\Delta_n = (\{1, \delta_0, \delta_1, \ldots, \delta_n\}, \cdot, \tau, \tau^*, \kappa)$ be an ⊛-algebra ⁹⁸⁴ where

$$
\bullet \quad \bullet \quad \delta_i \cdot \delta_j = \delta_j \cdot \delta_i = \delta_j \text{ for all } 0 \le i \le j \le n
$$

$$
\bullet \quad \bullet \quad \delta_k \mathbf{v} = \delta_k \mathbf{v}^* = \delta_{k+1} \text{ for all } 0 \le k < n \text{, and } \delta_n \mathbf{v} = \delta_n \mathbf{v}^* = \delta_n
$$

$$
\bullet \ \ S^{\kappa} = \delta_n \text{ for all } S \backslash \{1\} \neq \emptyset
$$

988 It is easy to verify that Δ_n is an idempotent and commutative ⊛-algebra. 989 Further, observe that Δ_n is generated by the element δ_0 .

990 7.1. $FO[\infty]$ with single variable

991 In this subsection we show that languages recognized by Δ_n are definable ⁹⁹² in FO¹[(∞_j)_{j≤n}]. It easily follows that the direct product of Δ_n recognize ⁹⁹³ exactly those languages definable in the one variable fragment, which is our ⁹⁹⁴ next theorem.

995 Theorem 9. Languages recognized by direct product of Δ_n are exactly those 996 definable in $\mathrm{FO}^1[(\infty_j)_{j\leq n}].$

997 Proof. We first show that languages recognized by Δ_n are those definable 998 in FO¹[$(\infty_j)_{j\leq n}$]. In this proof, we adopt the convention that $1 = \delta_{-1}$. Let $h: \Sigma^{\oplus} \to \Delta_n$ be a morphism. It suffices to show that for any element

¹⁰⁰⁰ $\delta_m \in \Delta_n$, $h^{-1}(\delta_m)$ is definable in FO¹[$(\infty_j)_{j \leq n}$]. Let $\uparrow m$ denote the set $\{\delta_{m'}\mid$ 1001 $m' \geq m$. Note that for any $\delta_m \neq \delta_n$, $h^{-1}(\delta_m) = h^{-1}(\uparrow m) \setminus h^{-1}(\uparrow (m+1)).$ 1002 Also $h^{-1}(\delta_n) = h^{-1}(\uparrow n)$. Therefore, it is sufficient to show that $h^{-1}(\uparrow m)$ is 1003 definable in $\mathrm{FO}^1[(\infty_j)_{j\leq n}].$

1004 For each $m = \{-1, 0, \ldots, n\}$, we define the language $L(m)$ as the set of ¹⁰⁰⁵ all words with at least one of the following two properties

1006 • there exists a letter a in w such that $h(a) \in \uparrow m$

1007 • there is a nonempty subordering $\alpha \subseteq \text{dom}(w)$ whose all positions are 1008 labelled a, the ∞ -rank of α is j, $h(a) = \delta_i \neq \delta_{-1}$ and $i + j \geq m$

The following $\text{FO}^1[(\infty_j)_{j\leq n}]$ sentence defines the language $L(m)$.

$$
\bigvee_{a \in \Sigma, h(a) \in \uparrow m} \exists x \ a(x) \quad \vee \quad \bigvee_{a \in \Sigma, h(a) = \delta_i \neq 1} \exists^{\infty_j} x \ a(x)
$$

1009 We show that $L(m) = h^{-1}(\uparrow m)$ by induction on the m. For $m = -1$, this 1010 clearly holds as $\uparrow\{-1\} = \Delta_n$, and therefore $h^{-1}(\uparrow\{-1\}) = \Sigma^{\oplus}$, and also $L(-1) = \Sigma^{\oplus}$. To prove the induction hypothesis assume the claim holds for 1012 all $m' < m$. Consider a word w. By a second induction on the height of an ¹⁰¹³ evaluation tree (T, h) for w we show for all words $v \in T$, $v \in h^{-1}(\uparrow m)$ if and ¹⁰¹⁴ only if $v \in L(m)$. In each of the following cases we assume that the children ¹⁰¹⁵ of the node (if they exist) satisfy the second induction hypothesis.

 1016 1. Case v is a letter: The hypothesis clearly holds

¹⁰¹⁷ 2. Case v is a concatenation of two words v_1 and v_2 : There are two cases ¹⁰¹⁸ to consider $-\{v_1, v_2\} \cap h^{-1}(\uparrow m) \neq \emptyset$ or not. In the first case, let for an 1019 $i \in \{1,2\}$ we have $h(v_i) \in \uparrow m$ and $v_i \in L(m)$. Clearly $h(v) = h(v_1v_2) \in L(m)$ 1020 $\uparrow m$ and $v \in L(m)$. For the second case, let us assume $h(v_1) = \delta_{m_1}$ and ¹⁰²¹ $h(v_2) = \delta_{m_2}$ such that $m_1 \leq m_2 < m$ and both $v_1, v_2 \notin L(m)$. From the 1022 definition of Δ_n , it follows that $h(v) = h(v_1v_2) = \delta_{m_2}$. For any $a \in \Sigma$, 1023 let the a-labelled suborderings in v_1 and v_2 be α_1 and α_2 respectively 1024 where ∞ -rank $(\alpha_1) \leq \infty$ -rank $(\alpha_2) = j$. It follows from the definition 1025 that ∞ -rank $(\alpha_1 + \alpha_2) = j$ and therefore $v \notin L(m)$.

1026 3. Case v is an ω -sequence of words $\langle v_1, v_2, \ldots \rangle$ such that $h(v_i) = \delta_{m'}$ for 1027 all i, and $\delta_{m'}$ is an idempotent (in Δ_n all elements are idempotents): 1028 Firstly, if $m' \geq m$ and $v_i \in L(m)$ then clearly $h(v) \in \uparrow m$ and $v \in$ ¹⁰²⁹ L(m). The non-trivial case is $m' = m - 1$. From the second induction 1030 hypothesis $v_i \notin L(m)$ for all i. If $\delta_{m'} = 1$, then $h(v) = 1 \notin \downarrow m$ and ¹⁰³¹ $v \notin L(m)$. Otherwise from the definition of Δ_n , $h(v) = (\delta_{m'})^{\tau} = \delta_m$, 1032 and each factor v_i contains some letter mapping to non-neutral elements 1033 of Δ_n . We need to show that $v \in L(m)$. By first induction hypothesis, 1034 each v_i has a letter a_i and an a_i -labelled set of positions α_i such that $h(a_i) = \delta_{k_i}$ and ∞ -rank $(\alpha_i) = k'_i$ such that $k_i + k'_i \ge m'$. Since $|\Sigma|$ is 1036 finite, ω -many of these a_i s are the same letter, say a. Let $h(a) = \delta_k$. 1037 Then for all i such that $a_i = a$, we know ∞ -rank $(\alpha_i) \geq k'$ where ¹⁰³⁸ $k + k' \geq m'$. Hence the a-labelled set of positions $\alpha = \sum_{i:a_i=a} \alpha_i$ in v satisfies ∞ -rank $(\alpha) \geq k' + 1$, and since $k + k' + 1 \geq m$ we get $v \in L(m)$.

1040 4. Case v is an ω^* -sequence: This case is symmetric to the above case.

1041 5. Case v is $\prod_{i\in\eta}v_i$, $\prod_{i\in\eta}h(v_i)$ is a perfect shuffle of $\{h(v_i)|i\in\eta\}=S$ and $h(v) = \overrightarrow{S^k}$: It is easy to see that the induction hypothesis holds 1043 if $S = \{1\}$. So, assume $S \setminus \{1\} \neq \emptyset$. Hence $h(v) = \delta_n$. Since, there 1044 are η -many of children u where $h(u) \neq 1$, there is a letter a such that $h(a) \neq 1$ and a-labelled set of positions in v has infinite ∞ -rank. Thus 1046 $v \in L(n)$.

¹⁰⁴⁷ For the other direction, note that Δ_n recognizes the language $\exists^{\infty_i} x$ (*a*(*x*) ∨ 1048 b(x)) for $i \leq n$ by the morphism $h(a) = h(b) = \delta_{n-i}$ and for $c \notin \{a, b\}, h(c) =$ 1049 1; the language then is $h^{-1}(\delta_n)$. The proof follows from the fact that a one ¹⁰⁵⁰ variable quantifier free formula is essentially a disjunction of letter predicates ¹⁰⁵¹ and therefore the boolean combination of sentences can be recognized by 1052 direct products of Δ_n . \Box

¹⁰⁵³ We now provide an equational algebraic characterization of the syntactic 1054
We-algebras of languages definable in $\mathrm{FO}^1[(\infty_j)_{j\leq n}]$. This is achieved by for-¹⁰⁵⁵ mulating an equational description of algebras which divide direct product 1056 of Δ_n .

 1057 We begin with the definition of a *shuffle-n-symmetric-trivial* algebra. We ¹⁰⁵⁸ say that a \bigoplus -algebra $(M, \cdot, \tau, \tau^*, \kappa)$ is shuffle-n-symmetric-trivial if M satisfies 1059 the following identities: 1) $x \cdot x = x$ – every element of M is idempotent, 1060 2) $x \cdot y = y \cdot x - M$ is commutative, 3) $x^{\tau} = x^{\tau^*}, (xy)^{\tau} = x^{\tau}y^{\tau}$, and 4) $x_1^{\tau^n}$ $\tau^n_1 \cdot x_2^{\tau^n}$ $x_1^{\tau^n} \cdot x_2^{\tau^n} \cdot \ldots \cdot x_p^{\tau^n} = \{x_1, \ldots, x_p\}^{\kappa} \text{ where } x^{\tau^0} = x \text{ and } x^{\tau^{i+1}} = \left(x^{\tau^i}\right)^{\tau}. \text{ Note}$

¹⁰⁶² that the definition of 'shuffle-trivial' from subsection [3.1](#page-11-0) matches that of $_{1063}$ shuffle-*n*-symmetric-trivial when *n* is 0.

1064 **Proposition 1.** Let M be a finite \otimes -algebra. Then M divides a direct product 1065 of Δ_n iff M is shuffle-n-symmetric-trivial.

1066 *Proof.* It is clear that Δ_n is shuffle-*n*-symmetrical trivial and this property 1067 is preserved under direct product and division. This shows that if M divides 1068 a direct product of Δ_n then it is shuffle-*n*-symmetric-trivial.

 $\frac{1069}{1069}$ For the converse, we fix a shuffle-*n*-symmetric-trivial M. It is easy to 1070 deduce that, for any element m of M, the subalgebra $\langle m \rangle$ of M generated ¹⁰⁷¹ by m is isomorphic to Δ_k for some $k \leq n$. In fact, the underlying set of 1072 $\langle m \rangle$ consists of elements $\{1, m = m^2, m^{\tau} = m^{\tau^*}, \ldots, m^{\tau^k} = m^{\tau^{k+1}} = m^{\kappa}\}\,$ 1073 and the well-defined morphism obtained by sending the generator of Δ_k to 1074 m provides an isomorphism between Δ_k and $\langle m \rangle$. We also have a morphism 1075 h_m from Δ_n to M which maps the generator of Δ_n to m such that the image 1076 of h_m is precisely $\langle m \rangle$.

 1077 Let $S = \{m_1, m_2, \ldots m_p\}$ be a generating set of M. An important conse- 1078 quence of shuffle-n-symmetric-triviality of M is that every element of M can be expressed as $m_1^{\tau^{i_1}} m_2^{\tau^{i_2}}$ ¹⁰⁷⁹ be expressed as $m_1^{\tau^{i_1}} m_2^{\tau^{i_2}} \cdots m_p^{\tau^{i_p}}$ where $0 \leq i_1, i_2, \ldots, i_p \leq n$.

We can now construct a map $h: \prod_{1}^{p} \Delta_n \to M$ by combining the individual morphisms $h_{m_i}: \Delta_n \to M$ as follows:

$$
h((n_1, n_2, \ldots, n_p)) = h_{m_1}(n_1)h_{m_2}(n_2)\cdots h_{m_p}(n_p)
$$

 $\frac{1}{1080}$ It can be argued that h is a surjective morphism. We skip the straightforward 1081 details. This shows that M is a homomorphic image of a direct product of 1082 Δ_n and completes the proof. \Box

¹⁰⁸³ Combining the above proposition with Theorem [9,](#page-37-1) we conclude that a ¹⁰⁸⁴ language is definable in $\text{FO}^1[(\infty_j)_{j\leq n}]$ iff its syntactic ⊛-algebra is shuffle- 1085 n-symmetric trivial. Thus we also obtain a decidable equational algebraic 1086 characterization of the one variable fragment $\mathrm{FO}^1[(\infty_j)_{j\leq n}].$

$_{1087}$ 7.2. Block Product Decompositions for FO[∞]

1088 In this section, we consider the full logic $\text{FO}[(\infty_j)_{j\leq n}]$ and observe that 1089 they define exactly those languages recognized by block products of Δ_n . First 1090 we show relativizing $\text{FO}[(\infty_j)_{j\leq n}]$ formulas with respect to first order vari-1091 ables works as intended. We'll only use this result for $\text{FO}[(\infty_j)_{j\leq n}]$ sentences ¹⁰⁹² though. See [\[15,](#page-49-5) Lemma VI.1.3] for a similar proof for FO.

Lemma 13. Let $\varphi \in \text{FO}[(\infty_i)_{i \leq n}]$ be a formula. Consider any word w with an assignment A that maps elements of free (φ) to positions less than some position $i \in \text{dom}(w)$. If $x \notin \text{free}(\varphi)$, then we can construct a relativized formula $\varphi_{\leq x}$ with free $(\varphi_{\leq x}) = \text{free}(\varphi) \cup \{x\}$ such that

$$
w, \mathcal{A}[x = i] \models \varphi_{< x} \text{ iff } w_{< i}, \mathcal{A} \models \varphi
$$

1093 Proof. Proof is via structural induction on $\text{FO}[(\infty_j)_{j\leq n}]$ formula. We only show the case for the extended infinitary quantifier. Let $\varphi = \exists^{\infty_k} y \psi$. We note that $w_{\leq i}$, \mathcal{A} $\models \exists^{\infty_k} y \psi$ if and only if there is a subordering $X \subseteq$ 1096 dom $(w_{\leq i})$ such that ∞ -rank $(X) = k$ and for all $j \in X$, $w_{\leq i}$, $\mathcal{A}[y = j] \models \psi$. ¹⁰⁹⁷ It follows, from the inductive hypothesis, that this is true if and only if ¹⁰⁹⁸ $w, \mathcal{A}[x = i] \models \exists^{\infty_k} y(\psi_{\leq x} \land y \leq x)$. This completes the proof. \Box

1099 **Theorem 10.** The languages defined by $\text{FO}[(\infty_j)_{j\leq n}]$ are exactly those rec-1100 ognized by finite block products of Δ_n . Moreover, the languages defined by 1101 FO[∞] are exactly those recognized by finite block products of $\{\Delta_n \mid n \in \mathbb{N}\}.$

¹¹⁰² Proof. We first show that languages recognizable by finite block products of 1103 Δ_n are definable in FO[$(\infty_j)_{j\leq n}$]. The proof is via induction on the number 1104 of Δ_n in an iterated block product. The base case follows from Theorem [9.](#page-37-1) ¹¹⁰⁵ For the inductive step, consider a morphism $h: \Sigma^{\oplus} \to M \square \Delta_n$. Let ¹¹⁰⁶ $h_1: \Sigma^\oplus \to M$ be the induced morphism to M, and let σ be the associated ¹¹⁰⁷ transducer. By the block product principle (see Proposition [5\)](#page-27-0), any language ¹¹⁰⁸ recognized by h is a boolean combination of languages $L_1 \subseteq \Sigma^{\oplus}$ recognized by 1109 M and $\sigma^{-1}(L_2)$ where $L_2 \subseteq (M \times \Sigma \times M)^\oplus$ is recognized by Δ_n . By induction 1110 hypothesis, L_1 is $\text{FO}[(\infty_j)_{j\leq n}]$ definable. By the base case L_2 is $\text{FO}[(\infty_j)_{j\leq n}]$ 1111 definable but over the alphabet $M \times \Sigma \times M$. To complete the proof, one needs ¹¹¹² to show for any word $w \in \Sigma^{\oplus}$ and assignment s, and for any $\mathrm{FO}[(\infty_j)_{j\leq n}]$ 1113 formula φ over the alphabet $M \times \Sigma \times M$, there exists a FO[$(\infty_i)_{i \leq n}$] formula 1114 $\hat{\varphi}$ over the alphabet Σ such that $w, s \models \hat{\varphi}$ if and only if $\sigma(w), s \models \varphi$. For instance, suppose $\varphi = \exists^{\infty_i} x (m_1, c, m_2)(x)$, and inductively ϕ_{m_1} (resp. ϕ_{m_2}) 1116 are FO $[(\infty_i)_{i\leq n}]$ sentences characterizing words over Σ^{\oplus} that are mapped ¹¹¹⁷ by h_1 to m_1 (resp. m_2). Then $\hat{\varphi}$ is $\exists^{\infty_i} x \ ((\phi_{m_1})_{\leq x} \wedge c(x) \wedge (\phi_{m_2})_{\geq x})$, where ¹¹¹⁸ $(\phi_{m_1})_{< x}$ is the formula ϕ_{m_1} relativized to less than the variable x. This way, ¹¹¹⁹ one proves that $\sigma^{-1}(L_2)$ is $\text{FO}[(\infty_j)_{j\leq n}]$ definable. This completes the proof ¹¹²⁰ of this direction.

¹¹²¹ The other direction of the proof is a standard generalization of the proof ¹¹²² for FO in the classical setting [\[15\]](#page-49-5). It progresses via structural induction on

1123 FO[$(\infty_j)_{j\leq n}$] formulas. We know that FO[∞] has letter and order predicates, ¹¹²⁴ is closed under boolean operations and infinitary existential quantifications. 1125 Inductively we prove that for any FO formula $\varphi = \phi(x_1, x_2, \ldots, x_n)$, the ¹¹²⁶ language $L(\varphi) \subseteq (\Sigma \times \{0,1\}^n)^{\oplus}$ over extended alphabet is recognized by an $_{1127}$ iterated block product of U₁. In this proof, we call a word/model valid if the ¹¹²⁸ 'row' for each variable contains exactly one position labelled 1.

1129 For the base case, let $\varphi = a(x)$. The language of this formula is the set $_{1130}$ of all valid words with an occurence of $(a, 1)$ (validity of the word enforces $_{1131}$ exactly one occurence of $(a, 1)$). Recalling Example [11](#page-28-0) one can see that 1132 checking validity of words can be done by direct product of copies of $U_1 \square U_1$. 1133 In particular, the language for $a(x)$ can be recognized by $U_1 \times (U_1 \square U_1)$ (also ¹¹³⁴ recall Example [5\)](#page-9-0), and by Lemma [11,](#page-29-1) this divides an iterated block product 1135 of U_1 s. Similarly, it is easy to show that language defined by $x < y$ is recog-¹¹³⁶ nized by iterated block products of U1. Boolean combinations of first order ¹¹³⁷ formulas can be inductively recognized by direct product of the algebras for ¹¹³⁸ individual formulas (extra validity checks, if required, for instance, for nega-¹¹³⁹ tion, can be handled as per our discussion so far). The non-trivial case is 1140 when $\phi = \exists^{\infty_i} x \ \psi \$ (for $i \leq n$). Let $L(\psi) \subseteq (\Sigma \times \{0, 1\})^{\oplus}$ be inductively recognized by $h: (\Sigma \times \{0,1\})^{\oplus} \to M \in \square^* \Delta_n$, that is, there is a set $F \subseteq M$ such ¹¹⁴² that $h^{-1}(F) = L(\psi)$. We prove that $M \Box \Delta_n$ recognizes $L(\phi)$. Once again we 1143 use the block product principle. Consider two morphisms $g_1: \Sigma^{\oplus} \to M$ and 1144 $g_2: (M \times \Sigma \times M)^{\oplus} \to \Delta_n$. Let $g_1(a) = h((a, 0))$ and suppose $g_2((m_1, a, m_2))$ 1145 equals δ_0 if $m_1 \cdot h((a, 1)) \cdot m_2 \in F$, and it equals 1 otherwise. Let σ be the transducer corresponding to g_1 . We show that $w \models \phi$ if and only if $g_2(\sigma(w)) = \delta_j$ 1146 ¹¹⁴⁷ where $j \geq i$. This would imply $L(\phi) = \sigma^{-1}(g_2^{-1}(\{\delta_i, \delta_{i+1}, \ldots, \delta_n\}))$ and by 1148 the block product principle, this is recognized by $M\square\Delta_n$.

1149 Let $w \models \phi$. If α_{ψ} is the set of all positions of w where ψ is true, then 1150 ∞ -rank $(\alpha_{\psi}) \geq i$. Let $l \in \alpha_{\psi}$ and $w(l) = a$. We can split w at the position l ¹¹⁵¹ as $w_1 a w_2$ and by logic semantics $w_1^0(a, 1) w_2^0 \models \psi$ (for any $u \in \Sigma^{\oplus}$, we denote ¹¹⁵² by u^0 the word over the same domain with $u^0[i] = (u[i], 0)$). If $h(w_1^0) = m_1$ 1153 and $h(w_2^0) = m_2$, then $m_1 \cdot h((a, 1)) \cdot m_2 \in F$. Also, $\sigma(w)[l] = (m_1, a, m_2)$. 1154 So, g_2 maps every position $l \in \alpha_{\psi}$ to δ_0 , and hence $g_2(\sigma(w)) = \delta_j$ for some 1155 $j \geq i$. Conversely, suppose $g_2(\sigma(w)) = \delta_j$ where $j \geq i$. Let α_0 denote the 1156 positions of $\sigma(w)$ for which g_2 maps to δ_0 . Since g_2 maps each letter to δ_0 1157 or 1, we get ∞ -rank $(\alpha_0) \geq i$. Let $l \in \alpha_0$. If $\sigma(w)[l] = (m_1, a, m_2)$, then 1158 $m_1 \cdot h((a, 1)) \cdot m_2 \in F$. This means ψ is true at position l for w. Since l is 1159 any position in α_0 , we have that $w \models \phi$. \Box

¹¹⁶⁰ 8. No Finite Block Product Basis Results

1161 The main goal of this section is to prove that $FO[\infty]$, $FO[\text{cut}]$, and the ¹¹⁶² semantic class FO[cut] ∩ WMSO over countable words do not admit a block ¹¹⁶³ product based characterization which uses only a finite set of ⊕-algebras $_{1164}$ (Theorem [12\)](#page-47-0). This is achieved by defining a suitable parameter called *gap*-1165 nesting-length for \bigoplus -algebras (Definition [6\)](#page-44-0), and our main technical lemma of ¹¹⁶⁶ this section, Lemma [18,](#page-45-0) that shows the parameter value does not increase on ¹¹⁶⁷ division and block product (for block product, we assume aperiodicity). This ¹¹⁶⁸ lemma also establishes that the infinite syntactic hierarchy inside $FO[\infty]$ to ¹¹⁶⁹ be strict (Theorem [11\)](#page-46-0).

¹¹⁷⁰ The result of Theorem [12](#page-47-0) is in stark contrast to our previous result over 1171 FO, Theorem [7](#page-32-1) which shows that a language of countable words is FO-¹¹⁷² definable if and only if it is recognized by a strong iteration of block product 1173 of copies of the single ⊛-algebra U₁ (alternately Δ_0). In the last section $_{1174}$ Theorem [10](#page-41-0) shows that FO[∞] has a block product characterization using ¹¹⁷⁵ the natural infinite basis set ${\{\Delta_n\}}_{n\in\mathbb{N}}$. The results in this section prove that ¹¹⁷⁶ this is optimal.

Fix a finite \oplus -algebra $(M, \cdot, \tau, \tau^*, \kappa)$. For every $n \in \mathbb{N}$, we define the ¹¹⁷⁸ operation $\gamma_n : M \to M$ which maps x to x^{γ_n} . The inductive definition of ¹¹⁷⁹ γ_n is as follows (recall that idempotent power is denoted by !): $x^{\gamma_0} = x^!$ and 1180 $x^{\gamma_n} = ((x^{\gamma_{n-1}})^{\tau} (x^{\gamma_{n-1}})^{\tau^*})^!$.

1181 **Lemma 14.** Let M be a finite \bigoplus -algebra. For each $m \in M$, there exists 1182 $n \in \mathbb{N}$ such that $\forall n' \geq n, m^{\gamma_n} = m^{\gamma_{n'}}$.

¹¹⁸³ Proof. Consider the following sequence: $a_0 = m^1$ and $a_{j+1} = ((a_j)^\tau \cdot (a_j)^{\tau^*})^!$. 1184 Clearly, $a_i = m^{\gamma_i}$; we prove this sequence becomes constant beyond a finite 1185 index. By \oplus -algebra axioms $x \cdot x^{\tau} = x^{\tau}$ and $x^{\tau^*} \cdot x = x^{\tau^*}$, we get that ¹¹⁸⁶ $a_{j+1} = a_j \cdot a_{j+1} = a_{j+1} \cdot a_j$ for all j. This and the fact that every element ¹¹⁸⁷ of this sequence is an idempotent further implies that for all $i \leq j$, we have 1188 $a_j = a_i \cdot a_{i+1} \dots a_j$.

Since M is finite, there is an i and a $j > i$ such that $a_i = a_j$. Let us assume that j is the smallest index strictly larger than i such that $a_i = a_j$. It is sufficient to show that $j = i + 1$. We know $a_j = a_j \cdot a_{j-1}$. Since $a_i = a_j$, we get that $a_i = a_i \cdot a_{j-1}$. As $i \leq j-1$, we also know that $a_{j-1} = a_i \cdot a_{i+1} \dots a_{j-1}$. Therefore,

$$
a_i = a_i \cdot a_{j-1} = a_i \cdot a_i \cdot a_{i+1} \dots a_{j-1} = a_i \cdot a_{i+1} \dots a_{j-1} = a_{j-1}
$$

1189 By the minimality of j, we get that $j - 1 = i$, that is, $j = i + 1$.

1190 **Definition 6.** The gap-nesting-length of a \bigoplus -algebra M, denoted gnlen (M) , ¹¹⁹¹ is the smallest n such that for all $m \in M$, $m^{\gamma_n} = m^{\gamma_{n+1}}$.

1192 It follows from the previous lemma that a finite \oplus -algebra has a finite gap-1193 nesting-length. It is a simple computation that, for each k, gnlen(Δ_k) = k. The main technical lemma of this section is Lemma [18](#page-45-0) that states that the gap-nesting-length parameter does not increase on division and block product of ⊕-algebras. This is the key to our no-finite-basis theorems. The following couple of results will help us prove the main lemma.

 $_{1198}$ Lemma 15. Consider \oplus -algebra M has compatible left and right actions on 1199 \oplus -algebra P. Let $m, m' \in M$ and $p \in P$. Then $mp^{\gamma_n}m' = (mpm')^{\gamma_n}$

¹²⁰⁰ [P](#page-19-2)roof. We first prove that $mp^1 m' = (mpm')^!$. By action axioms (recall [B-](#page-19-2)^{1[2](#page-19-2)01} 2 for left action), it is easy to see that $mp^km' = (mpm')^k$ for any natural number $k \geq 1$. Note that there exists $k \in \mathbb{N}$ such that $p^k = p^l$ and $(mpm')^k =$ ¹²⁰³ $(mpm')^!$. Then $mp^!m' = mp^km' = (mpm')^k = (mpm')^!$.

1204 The proof is now by induction on n. For $n = 0$, we have $mp^{\gamma_0}m =$ $_{1205}$ $mp^1 m = (mpm)^! = (mpm)^{\gamma_0}.$

For the inductive step, note that

$$
mp^{\gamma_n}m' = m((p^{\gamma_{n-1}})^{\tau} \cdot (p^{\gamma_{n-1}})^{\tau^*})^!m'
$$
 defn. of γ_n
\n
$$
= (m((p^{\gamma_{n-1}})^{\tau} \cdot (p^{\gamma_{n-1}})^{\tau^*})m')^!
$$

\n
$$
= ((m(p^{\gamma_{n-1}})^{\tau}m') \cdot (m(p^{\gamma_{n-1}})^{\tau^*}m'))^!
$$
 action axiom for \cdot
\n
$$
= ((m(p^{\gamma_{n-1}})m')^{\tau} \cdot (m(p^{\gamma_{n-1}})m')^{\tau^*})^!
$$
 action axiom for τ, τ^*
\n
$$
= (((mpm')^{\gamma_{n-1}})^{\tau} \cdot ((mpm')^{\gamma_{n-1}})^{\tau^*})^!
$$
 induction hypothesis
\n
$$
= ((mpm')^{\gamma_n}
$$
 defn. of γ_n

¹²⁰⁶ This completes the proof.

1207 Lemma 16. Let M and N be two \bigoplus -algebras where M has compatible actions ¹²⁰⁸ on N. Let $(m, n), (m', n') \in M \ltimes N$ such that $(m, n) = (m', n')^!$. Then ¹²⁰⁹ $m = (m')^!$. Further, if M is aperiodic^{[3](#page-44-1)}, then $mnm = (mn'm)^!$.

 \Box

 \Box

³we say a \oplus -algebra is aperiodic if its underlying semigroup is aperiodic

¹²¹⁰ Proof. Note that by concatenation rule of semidirect product algebra, we ¹²¹¹ have $(m, n)^2 = (m^2, nm + mn)$. Since (m, n) is an idempotent, we get $m =$ ¹²¹² m^2 , that is, $m \in M$ is an idempotent. Also, we get $n = nm + mn$ which ¹²¹³ implies $mnm = mnm^2 + m^2nm$. Using the fact that $m = m^2$, we get that 1214 mnm is an idempotent in N.

suppose $k \in \mathbb{N}$ such that of $(m, n) = (m', n')^k$. An easy calculation shows ¹²¹⁶ that $m = (m')^k$ and $n = \sum_{i=0}^{k-1} (m')^i n'(m')^{k-i-1}$. By our earlier argument, we ¹²¹⁷ know m is an idempotent, so $m = (m')^!$.

¹²¹⁸ If M is aperiodic, then $(m')^j = m$ for $j \geq k$. Hence $mnm = (mn'm)^k$. ¹²¹⁹ Since mnm is an idempotent, we get $mnm = (mn'm)^!$. \Box

1220 Lemma 17. Consider $(m, f), (m', f') \in M\square N$ such that $(m, f) = (m', f')^{\gamma_n}$. 1221 Then $m = (m')^{\gamma_n}$. If M is aperiodic, then $m fm = (mf'm)^{\gamma_n}$.

 1222 *Proof.* The proof is by induction on n. For the base case of $n = 0$, we have 1223 $(m, f) = (m', f')^{\gamma_0} = (m', f')^!$. By Lemma [16,](#page-44-2) $m = (m')^! = (m')^{\gamma_0}$ and if M ¹²²⁴ is aperiodic, $mfm = (mf'm)^! = (mf'm)^{\gamma_0}$. This proves the base case.

For the inductive step, let $(m, f) = (m', f')^{\gamma_n} = ((m', f')^{\gamma_{n-1}})^{\gamma_1}$. Also let $(e, g) = (m', f')^{\gamma_{n-1}}$. So $(m, f) = (e, g)^{\gamma_1}$. By induction hypothesis, $e =$ $(m')^{\gamma_{n-1}}$ and $m = e^{\gamma_1}$ implying $m = ((m')^{\gamma_{n-1}})^{\gamma_1} = (m')^{\gamma_n}$. If M is aperiodic, then by induction hypothesis, $ege = (ef'e)^{\gamma_{n-1}}$ and $mfm = (mgm)^{\gamma_1}$. Note that since $m = e^{\gamma_1} = (e^{\tau} \cdot e^{\tau^*})^!$, we have $m \cdot e = e \cdot m = m$. Therefore

$$
mfm = (mgm)^{\gamma_1}
$$

= $(m(ege)m)^{\gamma_1}$
= $(m(ef'e)^{\gamma_{n-1}}m)^{\gamma_1} = ((mf'm)^{\gamma_{n-1}})^{\gamma_1} = (mf'm)^{\gamma_n}$

¹²²⁵ This completes the proof.

¹²²⁶ We are now ready to state and prove our main technical lemma of this ¹²²⁷ section.

1228 Lemma 18. Let M and N be two \bigoplus -algebra.

1229 1. If M divides N then gnlen $(M) \leq$ gnlen (N) .

1230 2. If M, N are aperiodic then gnlen $(M\square N) \leq \max(\text{gnlen}(M), \text{gnlen}(N)).$

 1231 Proof. 1. If M is a subalgebra of N, then the property is easily verified. 1232 Let's suppose $h: N \to M$ is a surjective morphism, and gnlen $(N) = k$.

 \Box

1233 For any $m \in M$, there exists $n \in N$ such that $h(n) = m$. It is straightforward to check that $m^{\gamma_k} = h(n^{\gamma_k}) = h(n^{\gamma_{k+1}}) = m^{\gamma_{k+1}}$. This ¹²³⁵ completes the proof for division.

¹²³⁶ 2. Consider aperiodic M and N with max (gnlen (M) , gnlen (N)) = k. We 1237 show that gnlen $(M\square N) \leq k$. Note that, for any $m \in M$ and any 1238 $n \in N$, $m^{\gamma_k} = m^{\gamma_{k+1}}$ and $n^{\gamma_k} = n^{\gamma_{k+1}}$.

Let $(m, f) \in M\square N$ be an arbitrary element. We show that $(m, f)^{\gamma_k} =$ 1240 $(m, f)^{\gamma_{k+1}}$. Let $(e, g) = (m, f)^{\gamma_k}$. Then $(e, g)^{\gamma_1} = (m, f)^{\gamma_{k+1}}$. Also by Lemma [17,](#page-45-1) $e = m^{\gamma_k}$ and $ege = (efe)^{\gamma_k}$. Since M and N have gapnesting-length less than or equal to k, we get $e = m^{\gamma_k} = m^{\gamma_{k+1}} = e^{\gamma_1}$ 1242 and $ege = (efe)^{\gamma_k} = (efe)^{\gamma_{k+1}} = (ege)^{\gamma_1}$. Now we use the fact that in any aperiodic \oplus -algebra $x = x^{\gamma_1}$ implies $x = x^{\tau} \cdot x^{\tau^*}$ by the following argument $-x = (x^{\tau} \cdot x^{\tau^*})^! = (x^{\tau} \cdot x^{\tau^*})^! \cdot (x^{\tau} \cdot x^{\tau^*}) = x \cdot (x^{\tau} \cdot x^{\tau^*}) = x^{\tau} \cdot x^{\tau^*}.$ Therefore we have $e = e^{\tau} \cdot e^{\tau^*}$ and $ege = (ege)^{\tau} + (ege)^{\tau^*}$. Since (e, g) is an idempotent by definition of the γ_i operation, we get that e is an

$$
(e,g)^{\tau} \cdot (e,g)^{\tau^*}
$$

= $(e^{\tau}e^{\tau^*}, ge^{\tau}e^{\tau^*} + (ege^{\tau}e^{\tau^*})^{\tau} + (e^{\tau}e^{\tau^*}ge)^{\tau^*} + e^{\tau}e^{\tau^*}g)$
= $(e, ge + (ege)^{\tau} + (ege)^{\tau^*} + eg)$
= $(e, ge + ege + eg) = (e,g)^3 = (e,g)$

Hence $(m, f)^{\gamma_{k+1}} = (e, g)^{\gamma_1} = (e, g) = (m, f)^{\gamma_k}$. This completes the ¹²⁴⁷ proof for the block product operation. \Box

¹²⁴⁸ An important application of Lemma [18](#page-45-0) is that the syntactic hierarchy 1249 inside $FO[\infty]$ can be shown to be strict.

$$
\text{1250 Theorem 11.} \ \mathrm{FO}[(\infty_j)_{j \leq n}] \subsetneq \mathrm{FO}[(\infty_j)_{j \leq n+1}].
$$

idempotent in M . Therefore

¹²⁵¹ Proof. By Theorem [10,](#page-41-0) the syntactic \bigoplus -algebra of any FO $[(\infty_j)_{j\leq n}]$ -definable 1252 language divides an iterated block product of copies of Δ_n . By Lemma [18](#page-45-0) 1253 and the fact that gnlen $(\Delta_k) = k$, gnlen $(M) \leq n$. Note that, Δ_{n+1} is the 1254 syntactic ⊛-algebra for the language L defined by the $\text{FO}[(\infty_i)_{i\leq n+1}]$ formula $\exists^{\infty_{n+1}} x \ a(x)$. As gnlen $(\Delta_{n+1}) = n+1$, it follows that L cannot be defined in ∃ ¹²⁵⁵ 1256 $\text{FO}[(\infty_i)_{i \leq n}].$ \Box

¹²⁵⁷ Finally we present our no-finite-basis theorem.

 Theorem 12. There is no finite basis for a block product based characteri-1259 *zation for any of these logical systems* $FO[\infty]$, $FO[cut]$, $FO[cut] \cap WMSO$.

 Proof. Fix one of the logics $\mathcal L$ mentioned in the statement of the theorem. It follows from Theorem [8](#page-35-0) and the decidable algebraic characterization (see [\[10\]](#page-49-0)) of FO[cut] that the syntactic \oplus -algebras of \mathcal{L} -definable languages are 1263 aperiodic. Now suppose, for contradiction, $\mathcal L$ admits a finite basis B of 1264 aperiodic \oplus -algebras for its block product based characterization. Since B is 1265 finite, there exists $n \in \mathbb{N}$ such that for all \bigoplus -algebra M in B, gnlen $(M) \leq n$. It follows by Lemma [18](#page-45-0) that the syntactic ⊕-algebra N of every L-definable 1267 language has the property gnlen $(N) \leq n$.

Now consider the language L defined by the FO[∞] sentence $\exists^{\infty_{n+1}} x \ a(x)$. By Theorem [8,](#page-35-0) L is L-definable. Hence, the gap-nesting-length of the syn-1270 tactic ⊕-algebra K of L is less than or equal to n. However, K is simply ¹²⁷¹ Δ_{n+1} and gnlen $(\Delta_{n+1}) = n+1$. This leads to a contradiction. \Box

9. Conclusion

 This work provides various equational as well as product-based decom- positional algebraic characterizations of logical formalisms over countable words. Towards this, we have developed a seamless integration of the block product operation into the algebraic framework well suited for the countable setting.

 In fact, we have obtained algebraic characterizations of FO fragments de- termined by the number of permissible variables. We also generalize Simon's theorem on piecewise testable languages by establishing a decidable algebraic characterization of the Boolean closure of the existential-fragment of FO over countable words. More importantly, we have enriched FO with new infinitary quantifiers and established hierarchical block-product based characterization $_{1284}$ of the resulting extension FO[∞]. We also show that FO[∞] properties can be expressed simultaneously in FO[cut] as well as WMSO. We do not know if the converse also holds. If true, it will provide a syntactic means to describe the semantic class FO[cut]∩WMSO. We have also shown that these natural logical systems can not have a block-product based characterization using a finite basis.

 An interesting future direction is to obtain natural block product decom- positions for several sublogics of MSO studied in [\[10\]](#page-49-0), in particular that of FO[cut] and WMSO. This will complement the equational characterizations

 presented there and provide the linkages, in the spirit of the fundamental Krohn-Rhodes theorem for finite semigroups, between equational and prod-uct based algebraic characterizations over countable words.

References

- [1] W. Thomas, Languages, automata, and logic, in: G. Rozenberg, A. Salo- maa (Eds.), Handbook of Formal Languages, Volume 3: Beyond Words, Springer, 1997, pp. 389–455. [doi:10.1007/978-3-642-59126-6_7](https://doi.org/10.1007/978-3-642-59126-6_7).
- [2] J. Pin, Syntactic semigroups, in: G. Rozenberg, A. Salomaa (Eds.), Handbook of Formal Languages, Volume 1: Word, Language, Grammar, Springer, 1997, pp. 679–746. [doi:10.1007/978-3-642-59136-5_10](https://doi.org/10.1007/978-3-642-59136-5_10).
- [3] P. Tesson, D. Thérien, Logic meets algebra: the case of regular lan- guages, Logical Methods in Computer Science 3 (1) (2007). [doi:](https://doi.org/10.2168/LMCS-3(1:4)2007) [10.2168/LMCS-3\(1:4\)2007](https://doi.org/10.2168/LMCS-3(1:4)2007).
- [4] J.R. B¨uchi, On a Decision Method in Restricted Second Order Arith- metic, in: Proceedings of the 1960 International Congress of Logic, Methodology and Philosophy of Science, Stanford University Press, 1960, pp. 1–12, june.
- [5] M. O. Rabin, Decidability of second-order theories and automata on infinite trees, Transactions of the American Mathematical Society 141 $1312 \qquad (1969) \qquad 1-35.$
- [6] S.Shelah, The monadic theory of order, Ann. of Math. 102 (1975) 379– 1314 419.
- [7] O. Carton, T. Colcombet, G. Puppis, An algebraic approach to MSO- definability on countable linear orderings, The Journal of Symbolic Logic 83 (3) (2018) 1147–1189. [doi:10.1017/jsl.2018.7](https://doi.org/10.1017/jsl.2018.7).
- [8] M. P. Sch¨utzenberger, On finite monoids having only trivial sub- groups, Information and Control 8 (2) (1965) 190–194. [doi:10.1016/](https://doi.org/10.1016/S0019-9958(65)90108-7) [S0019-9958\(65\)90108-7](https://doi.org/10.1016/S0019-9958(65)90108-7).
- [9] R. McNaughton, S. A. Papert, Counter-Free Automata (MIT research monograph no. 65), The MIT Press, 1971.
- [10] T. Colcombet, A. V. Sreejith, Limited set quantifiers over countable linear orderings, in: M. M. Halld´orsson, K. Iwama, N. Kobayashi, B. Speckmann (Eds.), Automata, Languages, and Programming - 42nd International Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part II, Vol. 9135 of Lecture Notes in Computer Science, Springer, 2015, pp. 146–158. [doi:10.1007/978-3-662-47666-6_12](https://doi.org/10.1007/978-3-662-47666-6_12).
- [11] A. Manuel, A. V. Sreejith, Two-variable logic over countable linear or- derings, in: P. Faliszewski, A. Muscholl, R. Niedermeier (Eds.), 41st International Symposium on Mathematical Foundations of Computer 1332 Science, MFCS 2016, August 22-26, 2016 - Kraków, Poland, Vol. 58 of ¹³³³ LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016, pp. 66:1–66:13. [doi:10.4230/LIPIcs.MFCS.2016.66](https://doi.org/10.4230/LIPIcs.MFCS.2016.66).
- [12] D. M. Gabbay, I. Hodkinson, M. Reynolds, Temporal Logic: Math- ematical Foundations and Computational Aspects, Volume 1, Oxford University Press, Oxford, 1994.
- [13] A. B`es, O. Carton, Algebraic characterization of FO for scattered linear orderings, in: M. Bezem (Ed.), Computer Science Logic, 25th Interna- tional Workshop / 20th Annual Conference of the EACSL, CSL 2011, September 12-15, 2011, Bergen, Norway, Proceedings, Vol. 12 of LIPIcs, μ_{1342} Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2011, pp. 67–81. [doi:10.4230/LIPIcs.CSL.2011.67](https://doi.org/10.4230/LIPIcs.CSL.2011.67).
- [14] K. Krohn, J. Rhodes, Algebraic theory of machines. I. Prime decom- position theorem for finite semigroups and machines, Transactions of the American Mathematical Society 116 (1965) 450–464. [doi:10.2307/](https://doi.org/10.2307/1994127) [1994127](https://doi.org/10.2307/1994127).
- [15] H. Straubing, Finite automata, formal logic, and circuit complexity, 1349 Birkhaüser Verlag, 1994. [doi:10.1007/978-1-4612-0289-9](https://doi.org/10.1007/978-1-4612-0289-9).
- [16] H. Straubing, D. Thérien, Weakly iterated block products of finite monoids, in: S. Rajsbaum (Ed.), LATIN 2002: Theoretical Informat- ics, 5th Latin American Symposium, Cancun, Mexico, April 3-6, 2002, Proceedings, Vol. 2286 of Lecture Notes in Computer Science, Springer, 2002, pp. 91-104. doi:10.1007/3-540-45995-2\13.
- [17] B. Adsul, S. Sarkar, A. V. Sreejith, First-order logic and its infinitary quantifier extensions over countable words, in: E. Bampis, A. Pagourtzis (Eds.), Fundamentals of Computation Theory - 23rd International Sym- posium, FCT 2021, Athens, Greece, September 12-15, 2021, Proceed- ings, Vol. 12867 of Lecture Notes in Computer Science, Springer, 2021, $_{1360}$ pp. 39-52. doi:10.1007/978-3-030-86593-1\23.
- [18] B. Adsul, S. Sarkar, A. V. Sreejith, Block products for algebras over countable words and applications to logic, in: 34th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2019, Vancouver, BC, Canada, June 24-27, 2019, IEEE, 2019, pp. 1–13. [doi:10.1109/LICS.](https://doi.org/10.1109/LICS.2019.8785669) [2019.8785669](https://doi.org/10.1109/LICS.2019.8785669).
- [19] J. G. Rosenstein, Linear orderings, Academic press, 1982.
- [20] V. Diekert, P. Gastin, M. Kufleitner, A survey on small fragments of first-order logic over finite words, International Journal of Foun- dations of Computer Science 19 (3) (2008) 513–548. [doi:10.1142/](https://doi.org/10.1142/S0129054108005802) [S0129054108005802](https://doi.org/10.1142/S0129054108005802).
- [21] H. Straubing, P. Weil, Varieties, in: J. Pin (Ed.), Handbook of Au- tomata Theory, European Mathematical Society Publishing House, Z¨urich, Switzerland, 2021, pp. 569–614. [doi:10.4171/Automata-1/16](https://doi.org/10.4171/Automata-1/16).
- [22] I. Simon, Piecewise testable events, in: H. Barkhage (Ed.), Automata Theory and Formal Languages, 2nd GI Conference, Kaiserslautern, May 20-23, 1975, Vol. 33 of Lecture Notes in Computer Science, Springer, 1975, pp. 214–222. doi:10.1007/3-540-07407-4\23.
- $_{1378}$ [23] J.-E. Pin, [Mathematical foundations of automata theory](https://www.irif.fr/~jep/PDF/MPRI/MPRI.pdf) (December 2020).
- URL <https://www.irif.fr/~jep/PDF/MPRI/MPRI.pdf>
- [24] V. Diekert, M. Kufleitner, G. Rosenberger, U. Hertrampf, Discrete Al- gebraic Methods, De Gruyter, Berlin, Boston, 2016. [doi:10.1515/](https://doi.org/10.1515/9783110413335) [9783110413335](https://doi.org/10.1515/9783110413335).