
Algebraic Characterizations and Block Product

Decompositions for First Order Logic and its Infinitary

Quantifier Extensions over Countable Words

Bharat Adsula, Saptarshi Sarkara, A. V. Sreejithb,∗

aIndian Institute of Technology Bombay, Powai, Mumbai, 400076, Maharashtra, India
bIndian Institute of Technology Goa, Farmagudi, Ponda, 403401, Goa, India

Abstract

We contribute to the refined understanding of language-logic-algebra inter-
play in a recent algebraic framework over countable words. Algebraic charac-
terizations of the one variable fragment of FO as well as the boolean closure
of the existential fragment of FO are established. We develop a seamless inte-
gration of the block product operation in the countable setting, and general-
ize well-known decompositional characterizations of FO and its two variable
fragment. We propose an extension of FO admitting infinitary quantifiers to
reason about inherent infinitary properties of countable words, and obtain a
natural hierarchical block-product based characterization of this extension.
Properties expressible in this extension can be simultaneously expressed in
the classical logical systems such as WMSO and FO[cut]. We also rule out
the possibility of a finite-basis for a block-product based characterization of
these logical systems. Finally, we report algebraic characterizations of one
variable fragments of the hierarchies of the new extension.

Keywords: linear orderings, first-order logic, countable words, algebraic
structures, formal language theory, block product, Krohn-Rhodes theorem

∗Corresponding author
Email addresses: adsul@cse.iitb.ac.in (Bharat Adsul),

sreejithav@iitgoa.ac.in (A. V. Sreejith)
URL: https://www.iitgoa.ac.in/~sreejithav/ (A. V. Sreejith)

Preprint submitted to Journal of Computer and System Sciences May 24, 2024

1. Introduction1

Monadic Second-Order (MSO) logic is a natural logic to express prop-2

erties of words. Over finite words, Büchi-Elgot-Trakhtenbrot theorem [1]3

establishes that languages definable in MSO are precisely regular languages.4

Regular languages admit a variety of well-known characterizations [1, 2, 3]5

such as describability by regular expressions, acceptance by finite state au-6

tomata, or recognition by finite monoids. The seminal results of Büchi [4],7

Rabin [5], Shelah [6], and Carton et.al [7] show that this close relationship8

between logical expressiveness and language recognizability remains true not9

just over finite linear orderings but also over infinite words like ω-words10

and countable words. The effective translation between MSO and an au-11

tomata/algebra model gives decidability of MSO over these linear orderings.12

The classical result of Shelah (also in [6]) shows that over reals (uncountable13

orderings) MSO is undecidable. In this paper, we focus on analysing the14

expressive power and decidability of various logics over countable words.15

One can effectively associate, to a regular language of finite words, its16

syntactic monoid. This canonical algebraic structure carries a rich amount17

of information about the corresponding language. Its role is highlighted by18

the classical Schützenberger-McNaughton-Papert theorem [8, 9] which shows19

that aperiodicity property of the syntactic monoid coincides with describa-20

bility using star-free expressions as well as definability in First-Order (FO)21

logic. Building on the work of Shelah [6], Carton et. al. [7] proposed an22

algebraic model, ⊛-monoid, that recognize exactly those languages defin-23

able by MSO over countable linear orderings. This framework extends the24

language-logic-algebra interplay to the setting of countable words. The alge-25

braic approach paves the way for equational characterizations of logics and26

hence decidability of the problem of definability in the said logics. Building27

on the work in [7], algebraic characterization for variety of sub-logics of MSO28

over countable words is carried out in [10]. In particular, this work provides29

algebraic equational (hence decidable) characterizations of FO,FO[cut] – an30

extension of FO that allows quantification over Dedekind-cuts and WMSO –31

an extension of FO that allows quantification over finite sets. A decidable32

algebraic equational characterization for the two variable fragment of FO33

(denoted by FO2) over countable words is presented in [11].34

We begin our explorations in Section 3 with the small fragments of FO35

over countable words. We provide an equational characterization (Theo-36

rem 3) for FO1 – the one variable fragment of FO. Coupled with the results37

2

in [11] and [10] on the equational characterization of FO2 and FO = FO3 (see38

[12]), we have complete equational characterizations of FO fragments defined39

by the number of permissible variables. Our next result in the same sec-40

tion (Theorem 4) extends Simon’s theorem on piecewise testable languages41

to countable words and provides a natural algebraic characterization of the42

Boolean closure of the existential-fragment of FO.43

It turns out that the algebraic landscape of small fragments of FO over44

countable words parallels very closely the same landscape over finite words.45

This can be attributed to the limited expressive power of FO over countable46

words. For instance, Bès and Carton [13] showed that the seemingly natural47

‘finiteness’ property (that the set of all positions is a finite set) of countable48

words can not be expressed in FO!49

In Section 6 we extend FO with new infinitary quantifiers. The main50

purpose of our new quantifiers is to naturally allow expression of infinitary51

features that are inherent in the countable setting. An example formula52

using such an infinitary quantifier is: ∃∞1x a(x)∧¬∃∞1x b(x). In its natural53

semantics, this formula with one variable asserts that there are infinitely54

many a-labelled positions and only finitely many b-labelled positions. We55

propose an extension of FO called FO[∞] that supports first-order infinitary56

quantifiers of the form ∃∞kx to talk about existence of higher-level infinitely57

(more accurately, “Infinitary rank” k) many witnesses x. We organize FO[∞]58

in a natural hierarchy based on the maximum allowed infinitary-level of the59

quantifiers. We prove that FO[∞] properties can be expressed simultaneously60

(Theorem 8) in FO[cut] as well as WMSO.61

The other main results of this work are decomposition theorems in the62

countable setting. The seminal result of Krohn-Rhodes decomposition the-63

orem [14] shows that any finite monoid can be built from groups and the64

monoid U1 (a unique 2-element monoid) using a block-product construction65

[15]. There are other prominent examples in this line of work. A charac-66

terization of FO-logic (resp. FO2, the two-variable fragment) in terms of67

strongly (resp. weakly) iterated block-products of copies of U1 is presented68

in [15] (resp. [16]).69

Motivated by the decisive role played by block products in the standard70

settings [15, 3], we introduce block products in the countable setting in Sec-71

tion 4. The block product construction associates to a pair of ⊛-monoids72

(more precisely, ⊕-semigroups) (M,N) a new ⊛-monoid (more precisely, ⊕-73

semigroup) M□N . From a formal-language theoretic viewpoint, the impor-74

tance of the block product construction is best described by the accompa-75

3

nying block product principle (Theorem 5). Roughly speaking the block76

product principle says that evaluating a countable word u in M□N can be77

achieved by the following two-stage process:78

1. evaluate the word u in M and label every position x of u with the79

additional information about evaluations of u<x and u>x in M where80

u<x and u>x are such that u = u<xu[x]u>x (that is, u<x and u>x are81

the left and right factors/contexts at position x);82

2. evaluate this extended word (with the additional information) in N .83

Said differently, M ‘operates’ on u as usual; while when N ‘operates’ on u,84

it has access, at every position, to evaluations of M on left-right contexts at85

that position. Our block product construction and the accompanying block86

product principle extend naturally the results from finite words to countable87

words. Furthermore, we give decompositional characterizations of FO and88

FO2 over countable words (Theorems 7 and 6 respectively) - again natural89

extensions of analogous results over finite words.90

In Section 7, we extend the block-product based characterization of FO91

to FO[∞] (Theorem 10). Towards this, we identify an appropriate simple92

family of ⊛-algebra and show that this family (in fact, its initial fragments)93

serve as a basis in our hierarchical block-product based characterization.94

We also show that the language-logic-algebra connection for FO1 admits95

novel generalizations to the one variable fragments of the new hierarchical96

extensions.97

In Section 8, we present a ‘no finite block-product basis’ theorem (Theo-98

rem 12) for FO[∞], FO[cut], and the semantic class FO[cut] ∩WMSO. The99

theorem states that no finite set of ⊛-algebras closed under block products100

recognize all languages definable in these logics. This is in contrast with FO101

where the unique 2-element ⊛-algebra is a basis for a block-product based102

characterization. To prove the above result we identify a natural combinato-103

rial measure called gap-nesting-length that is shown to be well-behaved with104

respect to the block product operation.105

The rest of the article is organized as follows. Section 2 recalls basic no-106

tions about countable words and summarizes the necessary algebraic back-107

ground from the framework [7]. Section 3 deals with the small fragments108

of FO: FO1 and the Boolean closure of the existential fragment of FO. In109

Section 4 and Section 5 we develop the algebraic apparatus of block product110

operation and weakly iterated block-product based characterization of FO2.111

4

Section 6 is devoted to FO[∞] and its relation with FO[cut] and WMSO112

and in Section 7, we provide the relevant characterizations. Section 8 is con-113

cerned with the ‘no finite block-product basis’ theorems. We finally conclude114

in Section 9.115

The results presented in Sections 3, 6, 7, and 8 are an elaboration and116

extension of the work that appeared in FCT 2021 [17]. In order to make117

this article self-contained, we have also included relevant work of the authors118

(Sections 4, and 5) that was presented in LICS 2019 [18]. This paper includes119

the full proofs of the results, many of which are not present in the conference120

proceedings.121

2. Preliminaries122

In this section, we briefly present some mathematical preliminaries of123

countable linear orderings, and recall the algebraic framework developed124

in [7].125

A countable linear ordering (or simply ordering) α = (X,<) is a countable126

set X equipped with a total order <. An ordering β = (Y,<) is called a127

subordering of α if Y ⊆ X and the order on Y is induced from that on128

X. We denote by ω, ω∗ and η the orderings (N, <), (−N, <) and (Q, <)129

respectively. A subordering (I,<) of α is called convex if for any x < y ∈ I,130

and z ∈ α, x < z < y implies z ∈ I. A subordering (I,<) of α is dense in α131

if for any two points x < y ∈ α, there exists z ∈ I such that x < z < y. For132

example, (Q, <) is dense in (R, <) and (R, <) is dense in itself. If a linear133

ordering is dense in itself, we simply call it dense. A linear ordering is called134

scattered if all its dense suborderings are singleton or empty. The generalized135

sum of countably many (disjoint) linear orderings βi = (Xi, <i) which are136

themselves indexed by some linear ordering α = (Y,<) is the linear ordering137 ∑
i∈α βi = (Z,<′) where Z =

⋃
i∈αXi and for any two points x, y ∈ Z, x <′ y138

if either x <i y or x ∈ Xi, y ∈ Xj and i < j. The book [19] contains an139

in-depth study of linear orderings.140

A countable word w is a labelled countable linear ordering. More formally,141

given a finite alphabet Σ and a countable linear ordering α, a countable word142

(or simply word) w is a map w : α → Σ. We call α the domain of w, denoted143

dom(w). For a word w, we say a point or position x in the word to refer144

to an element of its domain. The notation w[x] denotes the letter at the145

xth position in the word w. A subword is a restriction of a word w to some146

5

induced subordering I of its domain, and is denoted by wI . If I is convex,147

then wI is called a factor.148

For two countable words u and v, we will denote by uv the countable word149

formed by the concatenation of u and v. The generalized concatenation of a150

countable sequence of words (ui)i∈α indexed by a linear countable ordering151

α is the unique word
∏

i∈α ui = v where dom(v) =
∑

i∈α dom(ui), and v[x] =152

ui[x] if x ∈ dom(ui).153

The following countable words are of special interest. The notation ε154

stands for the empty word (the word over the empty domain). The ω-word,155

aω denotes the word over the domain (N, <) such that every position is156

mapped to the letter a. Similarly, the ω∗-word aω
∗
denotes the word over157

the domain (−N, <) where every position is mapped to letter a. A perfect158

shuffle over a nonempty set P ⊆ Σ of letters, denoted by P η, is the word w159

over domain (Q, <) such that w[x] ∈ P for all positions x in dom(w) and for160

any a ∈ P , any x < y in dom(w), there exists z ∈ dom(w) such that w[z] = a161

and x < z < y. This is a unique word up to isomorphism [19].162

Example 1. The word (aω)ω denotes the countable word formed by gener-163

alized concatenation of ω many words aω. Similarly, for any countable word164

u, the word uω
∗
denotes the countable word formed by generalized concate-165

nation of ω∗ many words u. Note that upto isomorphism the words (aη)ω,166

(aη)ω
∗
, and (aη)η, is the same word.167

For an alphabet Σ, the set of all countable words is denoted by Σ⊛ and168

the set of all countable words over non-empty domain is denoted by Σ⊕.169

We now recall the algebraic framework from [7]. A ⊕-semigroup (S, π)170

consists of a set S with an operation π : S⊕ → S such that, π(a) = a171

for all a ∈ S and π satisfies the generalized associativity property – that is172

π
(∏

i∈α ui
)
= π

(∏
i∈α π(ui)

)
for every countable linear ordering α. If the173

generalized associativity holds with π : S⊛ → S, then (S, π) is called a ⊛-174

monoid. It is easy to see that, in this case, the element 1 = π(ε) of S is the175

neutral element of S. The defining property of a neutral element 1 is that:176

for every word u ∈ S⊕, if the word u|̸=1 is the subword obtained by removing177

every occurence of the element 1 and u|̸=1 is non-empty, then π(u) = π(u|̸=1).178

It is easy to see that if a given ⊕-semigroup (S, π) does not admit a179

neutral element, we can construct a ⊛-monoid on the set S1 = S ∪ 1 by180

introducing an additional element 1 and by extending π suitably to S1⊛ so181

that 1 becomes the neutral element. On the other hand, if ⊕-semigroup182

6

contains a neutral element, say 1 ∈ S, then (S, π) is already a ⊛-monoid183

with π(ε) = 1. In this case, we simply set S1 = S.184

A ⊕-semigroup or ⊛-monoid (S, π) is called finite if S is finite. For a set185

Σ, (Σ⊕,
∏
) (resp. (Σ⊛,

∏
)) is the free ⊕-semigroup (resp. free ⊛-monoid)186

generated by Σ.187

Example 2. U1 = ({1, 0}, π) is a finite ⊛-monoid where π is defined for all
u ∈ {1, 0}⊛ as:

π(u) =

{
1 if u ∈ {1}⊛

0 otherwise

Here π satisfies the generalized associativity property because no matter188

which factorization of u we take, the output of π applied directly on u equals189

the output of π applied in two stages — first on the factors, and then on the190

countable word formed by the outputs of the previous stage. Let us consider191

the word u = (011)ω. We have π(u) = 0 since u contains 0. If we consider the192

factorization u =
∏

i∈ω(011), then note that π(
∏

i∈ω(π(011)) = π(
∏

i∈ω 0) =193

0 which indeed equals π(u).194

Let (S, π) be a ⊕-semigroup. Note that even if S is finite, π need not195

be finitely presentable and hence not suitable for algorithmic purposes. For-196

tunately, it is possible to capture π through finitely presentable operators.197

This is precisely the reason for introducing ⊕-algebras.198

A ⊕-algebra (S, ·, τ, τ ∗, κ) consists of a set S with · : S2 → S, τ : S →199

S, τ ∗ : S → S, κ : 2S \ {∅} → S such that (with infix notation for · and200

superscript notation for τ, τ ∗, κ)201

A-1 (S, ·) is a semigroup.202

A-2 (a · b)τ = a · (b · a)τ and (an)τ = aτ for a, b ∈ S and n > 0.203

A-3 (b · a)τ∗ = (a · b)τ∗ · a and (an)τ
∗
= aτ

∗
for a, b ∈ S and n > 0.204

A-4 For every non-empty subset P of S, every element c in P , every subset205

Q of P , and every non-empty subset R of {P κ, a·P κ, P κ·b, a·P κ·b | a, b ∈206

P}, we have P κ = P κ ·P κ = P κ · c ·P κ = (P κ)τ = (P κ · c)τ = (P κ)τ
∗
=207

(c · P κ)τ
∗
= (Q ∪R)κ.208

A⊛-algebra is a⊕-algebra with a special element 1 where (S, ·, 1) is a monoid,209

1τ = 1τ
∗
= {1}κ = 1 and for all non-empty subsets P ⊆ S, P κ = (P ∪ {1})κ.210

7

A ⊕-semigroup naturally induces a ⊕-algebra. We simply set a · b =211

π(ab), aτ = π(aω), aτ
∗
= π(aω

∗
) and P κ = π(P η). Similarly a ⊛-monoid212

naturally induces a ⊛-algebra with the special element being the neutral213

element.214

Example 3. The ⊛-algebra induced by U1 (recall Example 2) is given below.
It plays a crucial role in this work and will also be denoted by U1.

· 1 0 τ τ ∗

1 1 0 1 1
0 0 0 0 0

Sκ =

{
1 if S = {1}
0 otherwise

The following is one of the fundamental results of [7, Lemma 3.4 and215

Theorem 3.11], enabling us to work with ⊕-semigroup and ⊕-algebra inter-216

changeably as we see fit.217

Theorem 1 ([7]). A ⊕-semigroup (S, π) induces a unique ⊕-algebra. Also,218

any finite ⊕-algebra is induced by a unique ⊕-semigroup.219

The proof of Theorem 1 is accomplished in [7] via the novel concept of220

evaluation trees. Given a ⊕-semigroup (S, ·, τ, τ ∗, κ), it helps in construction221

of a unique generalized associativity satisfying map π : S⊕ → S such that222

(S, π) induces the ⊕-algebra (S, ·, τ, τ ∗, κ).223

Definition 1. An evaluation tree over a word u ∈ S⊕ is a tree T = (T, ι)224

where T is the set of vertices, and ι : T → S assigns a value of S to each225

vertex. Every branch/path of T is of finite length and every vertex in T is a226

factor of u. In particular, the root is u. The children of a vertex represent a227

factorization of the (parent) vertex, and thus the (countable linear) ordering228

of the children is important. The tree has the following properties:229

• A leaf is a singleton letter a ∈ S such that ι(a) = a.230

• Internal nodes have either two or ω or ω∗ or η many children.231

• If w has two children v1 followed by v2, then w = v1v2 and ι(w) =232

ι(v1) · ι(v2).233

• If w has ω sequence of children ⟨v1, v2, . . . ⟩, then there is an idempotent234

e such that e = ι(vi) for all i ≥ 1, and w =
∏

i∈ω vi and ι(w) = eτ .235

8

• If w has ω∗ sequence of children ⟨. . . , v−2, v−1⟩, then there is an idem-236

potent f such that f = ι(vi) for all i ≤ −1, and w =
∏

i∈ω∗ vi and237

ι(w) = f τ
∗
.238

• If w has children ⟨vi⟩i∈η over η, then w =
∏

i∈η vi such that
∏

i∈η ι(vi)239

is the perfect shuffle of some E ⊆ S, and ι(w) = Eκ.240

The value of T is defined to be ι(u). Further an ordinal rank can be associ-241

ated to each node of T such that the rank of a node is greater than the rank242

any of its children. This can be used as an induction parameter to reason243

about any countable word u ∈ S⊕. It was shown in [7, Proposition 3.8 and244

3.9] that every word u has an evaluation tree and the values of two evaluation245

trees of u are equal. Setting π(u) = ι(u) creates the necessary map, as it is246

shown that π defined this way satisfies generalized associativity. Therefore,247

a ⊕-algebra defines the generalized associativity product π : S⊕ → S. The248

correspondence between ⊕-semigroups and ⊕-algebras permits interchange-249

ability; we implicitly exploit this.250

Example 4. Consider the ⊛-algebra Gap = (M, ·, τ, τ ∗, κ) where M =
{1, [], [), (], (), g}, and the operations are defined as follows for M .

· 1 [] [) (] () g τ τ ∗

1 1 [] [) (] () g 1 1
[] [] [] [) [] [) g [) (]

[) [) [] [) g g g [) ()

(] (] (] () (] () g () (]

() () (] () g g g g g
g g g g g g g g g

Sκ =

{
1 if S = {1}
g otherwise

It can be easily verified that Gap satisfies the axioms of ⊛-algebra. Following251

our discussion, any countable word u ∈M⊕ is assigned a unique value by this252

algebra via some evaluation tree for u. For instance consider the evaluation253

tree for the word []ω []ω
∗
consisting of a root with two children where the left254

(resp. right) child represents the word []ω (resp. []ω
∗
); the left (resp. right)255

child has ω (resp. ω∗) many children [] and has value []τ (resp. []τ
∗
). As a256

result, the value at the root is []τ · []τ
∗
= [) · (] = g. From our discussion so257

far, it should be clear that Gap evaluates a word over {[]}⊕ to g if and only258

if the word’s underlying linear ordering contains a gap (an ordering α has a259

gap if it is of the form β1+β2 where β1 has no maximum element and β2 has260

no minimum element).261

9

Now we briefly discuss some natural algebraic notions. Let (S, π) and262

(S ′, π′) be⊕-semigroups. A morphism from (S, π) to (S ′, π′) is a map h : S →263

S ′ such that, for every w ∈ S⊕, h(π(w)) = π′(h̄(w)) where h̄ is the pointwise264

extension of h to words. By a slight abuse of notation, we write h(w) for265

w ∈ S⊕ to denote h(π(w)) ∈ S ′. A ⊕-language L ⊆ Σ⊕ is recognizable266

if there exists a morphism h : (Σ⊕,
∏
) → (S, π) to a finite ⊕-semigroup267

such that L = h−1(h(L)). A ⊛-language L ⊆ Σ⊛ is recognizable if there268

exists a morphism h : (Σ⊛,
∏
) → (S, π) to a finite ⊛-monoid such that L =269

h−1(h(L)). We’ll simply talk about language of countable words and let the270

context explain whether the empty word is being considered or not. Note271

that these morphisms are completely determined by their restriction to the272

set Σ, as any map from Σ into S extends to a unique morphism from Σ⊕ to273

(S, π). By the equivalence of finite ⊕-semigroup and ⊕-algebra, a map from274

Σ into a ⊕-algebra extends to a ‘morphism’ from Σ⊕ into the ⊕-algebra, and275

languages can be naturally recognized via such morphisms.276

Example 5. Let A ⊆ Σ be a non-empty subset of the alphabet, and L be277

the set of words that contain an occurence of some letter from A. It is easy278

to see that the map h : Σ → U1 sending h(a) = 0 for all a ∈ A, and h(b) = 1279

for all b /∈ A recognizes L as L = h−1(0).280

Example 6. Consider the map h : Σ → Gap defined by h(a) = [] for all281

a ∈ Σ. The resulting morphism maps any word u to h(u) = g if and only282

if the domain of the word admits a gap. Consider a word v = aωaω
∗
for283

a ∈ Σ. Its pointwise extension under the map h is h̄(v) = []ω []ω
∗
. If (Gap, π)284

is the ⊛-monoid that induces the ⊛-algebra Gap, then since h extends to a285

morphism, we have h(v) = π(h̄(v)) = g as per the evaluation tree discussion286

in Example 4.287

Remark 1. Let h : Σ⊕ → M be a map/morphism into a ⊕-algebra. For any288

word v ∈ Σ⊕, we know its pointwise extension h̄(v) ∈M⊕ has an evaluation289

tree (T, ι). Note that every node in T represents a factor of h̄(v); this factor290

naturally corresponds to a factor v′ of v, that is, the node in T represents291

h̄(v′). Furthermore h(v′) is exactly ι(h̄(v′)), the value that ι maps the node292

to. Therefore the evaluation tree can equivalently be considered over the293

word v ∈ Σ⊕ with h mapping the word at each node to its evaluation.294

Note that (see [10]) any recognizable language L is associated a finite295

10

(canonical/minimal) syntactic ⊕-semigroup Syn(L) that divides1 every ⊕-296

semigroup recognizing L. Further Syn(L) can be effectively computed from297

a finite description of L.298

We close this section by mentioning the main result of [7].299

Theorem 2 ([7]). A language of countable words is recognizable iff it is300

MSO-definable.301

In the rest of this article we often refer to recognizable languages of count-302

able words as regular languages of countable words or simply regular lan-303

guages.304

3. Small Fragments of FO305

Our aim is to find algebraic characterizations of interesting logic classes
interpreted over countable words. In this section, we focus on two particu-
larly small fragments of first-order logic. First-order logic (FO) over a finite
alphabet Σ is a classical logic which can be inductively built using the fol-
lowing operations.

φ := a(x) | x < y | φ ∨ φ | ¬φ | ∃x φ

Here a ∈ Σ and φ is any FO formula. We use the letters ϕ, ψ, φ (with306

or without subscripts) to denote FO formulas, and the letters x, y, z (with307

or without subscripts) to denote FO variables which represent positions in308

countable words. We skip the standard semantics.309

A sentence is a formula with no free variable. The language of a sentence310

φ, denoted by L(φ), is the set of all words u ∈ Σ⊕ that satisfy φ. Let us look311

at some examples of countable languages definable in FO.312

Example 7. The following FO sentence describes the language of all words
whose underlying linear ordering is dense and has at least two distinct posi-
tions.

∃x∃y x < y ∧ ∀x∀y
(
x < y

)
⇒
(
∃z x < z < y

)
Example 8. The language of all words containing a gap where the set of313

letters approaching the gap (arbitrarily closely) from the left is disjoint from314

1M divides N if M is a homomorphic image of a sub-⊛-semigroup of N

11

the corresponding set of letters from the right, is definable in FO. In par-315

ticular, consider the set {w1w2 | w1 ∈ Σ⊛{a}⊕ has no maximum, and w2 ∈316

{b}⊕Σ⊛ has no minimum}. It is definable in FO by guessing two points x317

and y in w1 and w2 respectively, and expressing the following properties for318

positions in this interval - (1) all positions are labelled a or b, (2) b labelled319

positions come after all the a labelled positions, (3) the a-labelled positions320

do not have a maximum, and (4) the b-labelled positions do not have a min-321

imum.322

1. φ1(x, y) ::= ∀z x ≤ z ≤ y ⇒ a(z) ∨ b(z).323

2. φ2(x, y) ::= ∀z (x ≤ z ≤ y ∧ b(z)) ⇒ ¬(∃z′ z < z′ ≤ y ∧ a(z′)),324

3. φ3(x, y) ::= ∀z (x ≤ z ≤ y ∧ a(z)) ⇒ ∃z′ z < z′ < y ∧ a(z′)325

4. φ4(x, y) ::= ∀z (x ≤ z ≤ y ∧ b(z)) ⇒ ∃z′ x < z′ < z ∧ b(z′).326

The sentence ∃x∃y a(x)∧b(y)∧x < y∧φ1(x, y)∧φ2(x, y)∧φ3(x, y)∧φ4(x, y)327

defines the language.328

The classical Schützenberger-McNaughton-Papert theorem characterizes329

FO-definabilty of a regular language of finite words in terms of aperiodicity330

of its finite syntactic monoid. The survey [20] presents similar decidable331

characterizations of several interesting small fragments of FO-logic such as332

FO1, FO2, B(∃∗) – boolean closure of the existential first-order logic. Here333

we start by identifying algebraic characterizations, over countable words, for334

FO1 and B(∃∗).335

3.1. FO with single variable336

The fragment FO1 has access to only one variable. We recall that over337

finite words a regular language is FO1-definable iff its syntactic monoid is338

idempotent, that is x2 = x for any element x, and commutative, that is339

x · y = y · x for any elements x, y.340

Clearly, FO1 can recognize all words with a particular letter. With a341

single variable the logic cannot talk about order of positions. This gives an342

intuition that the syntactic ⊕-semigroup of a language definable in FO1 is343

commutative. Neither can FO1 count the number of occurrences of a letter.344

In short FO1 can merely detect the presence or absence of a letter.345

We say that a ⊕-algebra (M, ·, τ, τ ∗, κ) is shuffle-trivial if it satisfies the346

following identity: x1 · x2 · . . . · xp = {x1, . . . , xp}κ. Note that, every element347

12

of a shuffle-trivial ⊕-algebra is shuffle-idempotent (m is a shuffle idempotent348

if mκ = m). From the axioms of a ⊕-algebra it easily follows that, m349

being a shuffle-idempotent implies mτ = mτ∗ = m · m = m. Furthermore350

since x · y = {x, y}κ = {y, x}κ = y · x, a shuffle-trivial ⊕-algebra is also351

commutative.352

Theorem 3. Let L ⊆ Σ⊕ be a regular language. The following are equivalent.353

1. L is recognized by some finite shuffle-trivial ⊕-algebra.354

2. L is a boolean combination of languages of the form B⊕ where B ⊆ Σ.355

3. L is definable in FO1.356

4. L is recognized by direct product of U1s.357

5. The syntactic ⊕-algebra of L is shuffle-trivial.358

Proof.359

(1 ⇒ 2) Let L be recognized by a morphism h : Σ⊕ → (M, ·, τ, τ ∗, κ) into a360

finite shuffle-trivial ⊕-algebra. Consider an arbitrary word u ∈ Σ⊕ and let361

alph(u) ⊆ Σ be the set of letters in the word u, and let γ(u) = Πa∈alph(u)h(a)362

(note that due to commutativity, γ(u) is well-defined). We show that h(u) =363

γ(u). The proof is via the evaluation tree (T, h) of the word u. We show364

by induction on the rank of the nodes in tree (T, h) that h(v) = γ(v) for all365

nodes v in the tree. Consider a node v of the tree.366

1. Case v is a letter: The induction hypothesis clearly holds.367

2. Case v is a concatenation of words v1 and v2: By induction hypothesis368

h(v1) = γ(v1) and h(v1) = γ(v1). Hence we have h(v) = h(v1) · h(v2) =369

γ(v1) ·γ(v2). Since alph(v) = alph(v1) ∪ alph(v2) and all elements ofM370

are idempotents and commute, it is easy to see that γ(v) = γ(v1)·γ(v2).371

Hence h(v) = γ(v), and the induction hypothesis holds.372

3. Case v is an ω sequence of words ⟨v1, v2, . . . ⟩ such that there exists an373

e ∈ M and h(vi) = e for all i ≥ 1. Therefore h(v) = eτ ; since in M ,374

e = eτ , we have h(v) = e. We have to show γ(v) = e.375

Clearly there is a k ≥ 1 such that alph(v1v2 . . . vk) = alph(v); there-376

fore, denoting v′ = v1v2 . . . vk, we know γ(v′) = γ(v). By induction377

hypothesis and the finite concatenation case seen earlier, we know378

13

γ(v′) = h(v′) = Π1≤i≤kh(vi) = e. Therefore γ(v) = e = h(v), and379

the induction hypothesis holds in this case.380

4. Case v is an ω∗ sequence of words: This is symmetric to the case above.381

5. Case v =
∏

i∈η vi such that
∏

i∈η h(vi) is a perfect shuffle of the set382

{b1, . . . , bk} ⊆ M . Hence h(v) = {b1, . . . , bk}κ. By the shuffle-trivial383

property, we have h(v) = b1 · · · · ·bk. We have to prove γ(v) = b1 · · · · ·bk.384

Let l ≥ k and j1, j2, . . . , jl ∈ η be such that we get the following:385

{h(vj1), h(vj2), . . . , h(vjl)} = {b1, . . . , bk} and ∪1≤i≤lalph(vji) = alph(v).386

Denoting v′ = vj1 . . . vjl , we therefore get γ(v′) = γ(v), and that387

h(v′) = Π1≤i≤lh(vji). Since elements of M commute and are idem-388

potents, we have h(v′) = b1 · · · · · bk. By the induction hypothesis389

and finite concatenation case earlier, we can say γ(v′) = h(v′). Hence390

γ(v) = b1 · · · · · bk, and the induction hypothesis holds in this case also.391

The induction hypothesis, therefore, holds for any word u ∈ A⊕. So L
is union of equivalence classes defined by the finite index relation {(u, v) |
alph(u) = alph(v)}. All these classes are boolean combination of languages
of the form B⊕ for some B ⊆ Σ, as seen below.

{u | alph(u) = B} = B⊕ \

(⋃
b∈B

(B \ {b})⊕
)

(2 ⇒ 3) Note that B⊕ is expressed by the FO1 formula ∀x ∨a∈B a(x). The392

claim follows from boolean closure of FO1.393

(3 ⇒ 4) Due to the restriction of a single variable, any formula φ(x) is a394

boolean combination of atomic letter predicates. Since a position in a word395

can have exactly one letter, any non-trivial formula φ(x) is a disjunction396

of letter predicates, e.g. a(x) ∨ b(x). A language defined by the sentence397

∃x (a(x)∨ b(x)) is recognized by the ⊕-algebra U1 via h : Σ → U1 that maps398

a, b to 0 ∈ U1 and every other letter to 1 ∈ U1. A language defined by boolean399

combination of such sentences can be recognized by direct products of U1.400

(4 ⇒ 5) The syntactic ⊕-algebra of L divides any ⊕-algebra that recognizes401

L; so it divides a direct product of finitely many U1. It is easily verified402

that ⊕-algebra U1 is shuffle-trivial. Since these properties are identities, and403

identities are preserved under direct product and division (see [21]), we get404

that the syntactic ⊕-algebra of L is shuffle-trivial.405

14

(5 ⇒ 1) The syntactic ⊕-algebra of L is finite because L is a regular language.406

Also, it is shuffle-trivial by assumption, and a language is always recognized407

by its syntactic ⊕-algebra. So this direction trivially holds.408

3.2. Boolean closure of existential FO409

Let us first recall the characterization of B(∃∗) - the boolean closure of410

existential FO over finite words. This is precisely the content of the theorem411

due to Simon [22]. The usual presentation of Simon’s theorem refers to412

piecewise testable languages which are easily seen to be equivalent to B(∃∗)-413

definable languages. Simon’s theorem states that a regular language of finite414

words is B(∃∗)-definable iff its syntactic monoid is J-trivial. We recall that415

a monoid M is J-trivial if for all m,n ∈M , MmM =MnM implies m = n.416

In short, the Green’s equivalence relation J on M is the equality relation.417

We refer to [23] for a detailed study of Green’s relations and their use in the418

proof of Simon’s theorem.419

The proof of Simon’s theorem uses the congruence ∼n, parametrized by420

n ∈ N, on finite words Σ∗: for u, v ∈ Σ∗, u ∼n v if u and v have the same set421

of subwords of length less than or equal to n. Note that ∼n has finite index.422

We fix n ∈ N and work with ∼n defined on countable words Σ⊛: for423

u, v ∈ Σ⊛, u ∼n v if u and v have the same set of subwords of length less424

than or equal to n. It is immediate that ∼n is an equivalence relation on Σ⊛425

of finite index. We let Sn = Σ⊛/ ∼n denote the finite set of ∼n-equivalence426

classes. For a word w, [w]n denotes the ∼n-equivalence class which contains427

w.428

Lemma 1. There is a natural well-defined product operation π : S⊛n → Sn as429

follows: π
(∏

i∈α[wi]n

)
=
[∏

i∈αwi
]
n
. This operation π satisfies the general-430

ized associativity property. As a result, Sn = (Sn, 1 = [ε]n, π) is a ⊛-monoid.431

Note that the lemma implies that hn : Σ⊛ → Sn mapping w to [w]n is a432

morphism of ⊛-monoids.433

Proof. Let w =
∏

i∈αwi and w
′ =

∏
i∈αw

′
i where wi ∼n w

′
i for all i ∈ α. To434

show π is well defined, we need to show w ∼n w
′. Suppose u is a subword of435

w of length n. We can factorize u as u = u1u2 . . . uk where uj (for 1 ≤ j ≤ k)436

is a subword of wij . Since wij ∼n w
′
ij
and |uj| ≤ n, we have uj is a subword437

of w′
ij
, and thus u is a subword of w′ as well. Therefore, π is well defined.438

15

Next we show that π satisfies the generalized associativity property. Let
u =

∏
i∈α ui where ui =

∏
j∈αi

[vj]n and α is any countable linear ordering.
We have π(ui) = [

∏
j∈αi

vj]n and hence

π(
∏
i∈α

π(ui)) =

[∏
i∈α

(
∏
j∈αi

vj)

]
n

= π(u)

This completes the proof.439

It is known [21] that a finite monoid (M, ·) is J-trivial if and only if it440

satisfies the (profinite) identities: x! = x · x! and (x · y)! = (y · x)!. Here x!441

denotes the unique idempotent in the semigroup generated by x; guarantee442

of existence and uniqueness of this generated idempotent is a basic result for443

finite semigroups. We also use the notation x! for elements of ⊛-algebra and444

it is the idempotent generated by x using the binary concatenation operation.445

We say that a ⊛-algebra is shuffle-power-trivial if it satisfies the (profinite)446

identity: (x1 · x2 · . . . · xp)! = {x1, . . . , xp}κ. Note that, every idempotent of447

such a ⊛-algebra is a shuffle-idempotent: x! = x implies xκ = x.448

Remark 2. Note that in a shuffle-power-trivial algebra, (x · y)! = {x, y}κ =
{y, x}κ = (y · x)!. Also,

x! = xκ = (xκ)τ = (x!)
τ
= xτ = x · xτ = x · x!

Thus, a shuffle-power-trivial ⊛-algebra is J-trivial. It is also clear that we449

have x! = xτ = xτ
∗
= xκ.450

Lemma 2. The ⊛-algebra Sn is shuffle-power-trivial.451

Proof. Let x1, x2, . . . , xp ∈ Sn. Suppose xi is the equivalence class of word ui452

over Σ. It is easily seen that any n length subword of {u1, u2, . . . , up}η is also453

present in (u1u2 . . . un)
n. Therefore {x1, x2, . . . , xp}κ = (x1 ·x2 . . . xp)n. Since454

{x1, x2, . . . , xp}κ is idempotent, we get {x1, x2, . . . , xp}κ = (x1 ·x2 . . . xp)!.455

Theorem 4. Let L ⊆ Σ⊛ be a regular language. The following are equivalent.456

1. L is recognized by a finite shuffle-power-trivial ⊛-algebra.457

2. L is recognized by the quotient morphism hn : Σ⊛ → Sn for some n.458

3. L is definable in B(∃∗).459

16

4. The syntactic ⊛-algebra of L is shuffle-power-trivial.460

Proof.461

(1 ⇒ 2) Let L be recognized by h : Σ⊛ → M where M = (M, 1, ·, τ, τ ∗, κ)462

is a finite shuffle-power-trivial ⊛-algebra. Since shuffle-power-triviality is463

preserved in sub-⊛-algebra, we can assume h to be surjective. Consider464

the restriction of h to the free monoid Σ∗ resulting in the induced monoid465

morphism. We denote it by h′ : Σ∗ → (M, 1, ·). By the identities of the466

⊛-algebra M and its consequences as pointed out in the Remark 2, this467

morphism is surjective and the monoid (M, 1, ·) is J-trivial.468

Using the argument from Simon’s theorem (see [23, Theorem 3.13]), there469

exists n ∈ N, such that (M, 1, ·) is a quotient of Σ∗/∼n and u ∼n v implies470

h′(u) = h′(v). We need to ‘lift’ this result to general countable words. For471

this we prove that any countable word w has a finite subword ŵ such that472

w ∼n ŵ and h(w) = h′(ŵ). Let T = (T, h) be an evaluation tree over w. We473

prove by induction that for every node v of the tree, there is a finite subword474

v̂ of v with v ∼n v̂ and h(v) = h′(v̂).475

1. Case v is a letter: The induction hypothesis clearly holds by taking476

v̂ = v.477

2. Case v is a concatenation of words v1 and v2: By induction hypothesis,478

we have finite subwords v̂1 and v̂2 of v1 and v2 respectively such that479

v̂1 ∼n v1, h(v1) = h′(v̂1) and v̂2 ∼n v2, h(v2) = h′(v̂2) Note that480

v̂1 ∼n v1 and v̂2 ∼n v2 implies v̂1v̂2 ∼n v1v2. Further, v̂1v̂2 is a finite481

subword of v1v2 and h(v) = h(v1) · h(v2) = h′(v̂1) · h′(v̂2) = h′(v̂1v̂2).482

This proves the induction hypothesis holds in this case.483

3. Case v is an ω sequence of words ⟨v1, v2, . . . ⟩ such that there exists484

an idempotent e ∈ M and h(vi) = e for all i ≥ 1 and h(v) = eτ . As485

observed in Remark 2, e = eκ = (eκ)τ = eτ ; therefore we have h(v) = e.486

Because there are only finitely many words of length less than or equal487

to n, clearly there is a k ≥ 1 such that v1v2 . . . vk ∼n v. Let us denote488

v1v2 . . . vk by v′. Note that since e is an idempotent, h(v′) = e = h(v).489

It is now easy to complete the proof by using induction hypothesis for490

each vi for 1 ≤ i ≤ k and using the arguments in the concatenation491

case above.492

4. Case v is an ω∗ sequence of words: This is symmetric to the case above.493

17

5. Case v =
∏

i∈η vi such that u =
∏

i∈η h(vi) ∈M⊕ is a perfect shuffle of494

{b1, . . . , bk} ⊆M and h(v) = {b1, . . . , bk}κ. By the shuffle-power-trivial495

property, we have h(v) = (b1 · . . . · bk)!.496

We claim that there exists a finite subset X ⊂ η such that, with v′ =497 ∏
i∈X vi and u′ =

∏
i∈X h(vi), v ∼n v′ and the finite subword u′ of498

u is a large power of the word b1b2 . . . bk. This would imply h(v′) =499

(b1 · . . . · bk)! = h(v). We can now apply induction hypothesis on vi for500

each i ∈ X and proceed as in the concatenation case.501

It remains to show the existence of X. We first choose X large enough502

so that all subwords of v upto length n are represented in v′ and then503

increase X to ensure that u′ is of the desired form. This is possible504

thanks to the fact that u is perfect shuffle of {b1, . . . , bk}.505

Now for any two countable words u and v, if u ∼n v, then h(u) = h′(û) =506

h′(v̂) = h(v) where the middle equality is from the argument used in the507

proof of Simon’s theorem mentioned before. Invoking Lemma 1, it follows508

that the given morphism h factors through the morphism hn : Σ⊛ → Sn that509

maps u to [u]n.510

(2 ⇒ 1) This follows from Lemma 2.511

(2 ⇒ 3) Every equivalence class of ∼n is clearly definable in B(∃∗).512

(3 ⇒ 2) Let L be recognized by the formula α ::= ∃x1, . . . , xnφ(x1, . . . , xn).513

We show that for an u ∼n v, u |= α if and only if v |= α. Consider an as-514

signment s which assigns the variables xis to a position in the domain of u515

such that u, s |= φ. Note that since φ is a quantifier free formula it is a516

boolean combination of formulas of the form xi < xj, xi = xj and a(xi). Let517

X = {s(xi) | 1 ≤ i ≤ n} ⊆ dom(u) be the set of n points which are assigned518

to the xis. Since u ∼n v, there is a set Y ⊆ dom(v) of n points such that519

u|X = v|Y . Consider an assignment ŝ to variables xi to positions in Y such520

that s(xi) < s(xj) iff ŝ(xi) < ŝ(xj). Clearly such an assignment satisfies521

v, ŝ |= φ since the ordering between the variables and the letter positions522

are preserved. Therefore we get that u |= α implies v |= α. A symmetric523

argument shows the other direction.524

(4 ⇒ 1) This is a trivial observation.525

(1 ⇒ 4) This follows from the fact that identities are preserved under526

division.527

18

4. Algebraic Products528

So far we have provided algebraic characterizations for small fragments of529

first order logic. Note that the characterizations are of two kinds — decidable530

characterization in terms of identities (we have given such characterizations531

for both FO1 and B(∃∗)), and decompositional characterization where a com-532

bination of simple algebraic structures recognize the exact class of language533

(we have given such a characterization for FO1). We now move on to char-534

acterizing higher logic classes. In [10], decidable characterizations for many535

interesting logic classes, e.g. FO, have been discovered. So we focus on pro-536

viding decompositional characterizations instead. Recall that for FO1, direct537

product of U1s provide an exact characterization. However for more expres-538

sive logics, direct product is not suitable for getting simple prime algebraic539

structures, since direct product can only handle boolean combination of lan-540

guages recognized by individual structures. In the finite words setting, block541

product is an algebraic product that has played a significant role in pro-542

viding interesting decompositional characterizations of several logic classes543

like FO and MSO [15]). Motivated by this, we introduce the block product544

operation for ⊕-semigroups and ⊕-algebras, and investigate decompositional545

characterizations of FO, its subclass FO2, and also beyond first order logic.546

In this section, our aim is to develop a suitable block product operation547

that is conceptually the right counterpart to the classical notion over monoids548

and finite words. To achieve this aim, we define the notion of compatible left549

and right actions on ⊕-semigroups and generalize the concept of semidirect550

product from semigroup theory to this setting. Block product, being a special551

case of semidirect product, gets defined as a result. A similar development for552

the block product operation in the classical setting is present in [15]. Finally553

we establish a result called block product principle which relates language554

recognized by the block product of two structures in terms of languages555

recognized by each of the individual structures.556

4.1. Actions557

Let (M,π) and (N, π̂) be two ⊕-semigroups. Note that the set of all ⊕-558

semigroup morphisms from (N, π̂) to itself forms a monoid —the endomor-559

phism monoid of N— under function composition. A left action of (M,π)560

on (N, π̂) is a morphism from M into the endomorphism monoid of N . In561

other words, it is a map M ×N → N satisfying the following properties (we562

denote by mn the element to which the pair (m,n) maps).563

19

B-1 π(m1m2)n = m1(m2n)564

B-2 mπ̂(
∏

i∈α ni) = π̂(
∏

i∈αmni)565

If M and N are both ⊛-monoids with neutral elements 1 and 1̂ respectively,566

then the action is called monoidal if, for all m ∈M , n ∈ N the following two567

conditions hold.568

C-1 1n = n569

C-2 m1̂ = 1̂570

A right action of M on N is defined symmetrically. M is said to have571

compatible left and right actions on N if the actions commute, or in other572

words if, for m,m′ ∈ M and n ∈ N , the property (mn)m′ = m(nm′) is573

satisfied. We use the notation m(
∏

i∈α ni)m
′ to denote the natural pointwise574

extension
∏

i∈αmnim
′.575

Actions are naturally defined for ⊕-algebra as well. Let (M, ·, τ, τ ∗, κ) and576

(N,+, τ̂ , τ̂ ∗, κ̂) be ⊕-algebras induced by ⊕-semigroups (M,π) and (N, π̂)577

respectively. The action requirements can be equivalently stated in terms of578

algebra operators, e.g. the left action requirements are as follows:579

D-1 (m1 ·m2)n = m1(m2n)580

D-2 m(n1 + n2) = mn1 +mn2581

D-3 mnτ̂ = (mn)τ̂582

D-4 mnτ̂
∗
= (mn)τ̂

∗
583

D-5 m{n1, . . . , nj}κ̂ = {mn1, . . . ,mnj}κ̂584

4.2. Semidirect product585

We define a bilateral semidirect product of ⊕-semigroups (M,π) and586

(N, π̂) whereM has compatible left and right actions on N . Here onwards we587

refer to bilateral semidirect product simply as semidirect product. Similarly588

we refer to compatible left and right actions simply as actions.589

Definition 2. Given (M,π) with actions on (N, π̂), the map θ : (M×N)⊕ →590

M⊕ × N⊕ associates with any word u ∈ (M × N)⊕ two words v ∈ M⊕
591

and w ∈ N⊕ as follows. If u =
∏

i∈α(mi, ni), then v =
∏

i∈αmi and w =592 ∏
i∈α π(

∏
j<imj)niπ(

∏
j>imj). See Figure 1.593

20

i
↓

(M ×N)⊕ u : . . .
mi

ni
. . .

M⊕ v : . . . mi . . .

N⊕ w : . . . π(
∏

j<imj) ni π(
∏

j>imj) . . .

Figure 1: θ(u) = (v, w)

The following lemma states a useful property of the map θ.594

Lemma 3. Consider (M,π) with actions on (N, π̂). Suppose u =
∏

i∈α ui ∈
(M × N)⊕ with θ(u) = (v, w) and for i ∈ α, θ(ui) = (vi, wi). Then v =∏

i∈α vi and w =
∏

i∈αw
′
i where

w′
i = π(

∏
j<i

vj)wiπ(
∏
j>i

vj)

Proof. Consider an arbitrary position l ∈ dom(u) and let u[l] = (m,n).595

There exists i ∈ α such that l ∈ dom(ui). From Definition 2, v[l] = m = vi[l].596

In contrast, w[l] = π(v<l)nπ(v>l) and wi[l] = π((vi)<l)nπ((vi)>l). Note that597

v<l = (
∏

j<i vj)(vi)<l, and similarly for the suffix v>l. Therefore w[l] =598

π(
∏

j<i vj)wi[l]π(
∏

j>i vj) by using generalized associativity of π and action599

axioms (the axiom B-1 is used for the left action). The lemma follows.600

Definition 3 (Semidirect Product). Given (M,π) with actions on (N, π̂),601

their semidirect productM⋉N is the pair (M×N, π̃) where π̃ : (M×N)⊕ →602

M ×N is defined by: for u with θ(u) = (v, w), we let π̃(u) = (π(v), π̂(w)).603

The proof of the following lemma verifies that M ⋉N is a ⊕-semigroup604

by showing that π̃ satisfies the general associativity property.605

Lemma 4. The structure M ⋉N = (M ×N, π̃) is a ⊕-semigroup.606

Proof. Let u =
∏

i∈α ui where u, ui ∈ (M × N)⊕. We have to prove π̃(u) =607

π̃(
∏

i∈α π̃(ui)). Rewriting
∏

i∈α π̃(ui) as z, we have to prove π̃(u) = π̃(z).608

Suppose θ(u) = (v, w) and for i ∈ α, θ(ui) = (vi, wi). Then by Lemma 3,609

v =
∏

i∈α vi and w =
∏

i∈αw
′
i where w

′
i is as given in the lemma statement.610

By Definition 3, π̃(u) = (π(v), π̂(w)). Using the generalized associativity611

properties of π and π̂, we get π̃(u) = (π(
∏

i∈α π(vi)), π̂(
∏

i∈α π̂(w
′
i))).612

21

Next we analyze the word z. Note that dom(z) = α and z[i] = π̃(ui).
Further, recall that θ(ui) = (vi, wi). From Definition 3, we get that π̃(ui) =
(π(vi), π̂(wi)). So z[i] = (π(vi), π̂(wi)). We now compute θ(z) using Defini-
tion 2. Let θ(z) = (z′, z′′). It is easy to see that z′[i] = π(vi). Using this, we
see that

z′′[i] = π(
∏
j<i

π(vj))π̂(wi)π(
∏
j>i

π(vj))

= π̂(π(
∏
j<i

vj)wiπ(
∏
j>i

vj))

= π̂(w′
i)

Now we proceed with the computation of π̃(z) by using Definition 3.

π̃(z) = (π(z′), π̂(z′′))

= (π(
∏
i∈α

π(vi)), π̂(
∏
i∈α

π̂(w′
i)))

Comparing this with the expression for π̃(u) derived earlier, we see that613

π̃(u) = π̃(z). This completes the proof.614

Lemma 5. If M and N are both ⊛-monoids and the underlying actions are615

monoidal, then M ⋉N is a ⊛-monoid.616

Proof. Let M and N have neutral elements 1 and 1̂ respectively. We prove617

that (1, 1̂) is the neutral element of M ⋉ N . Consider u ∈ (M × N)⊛. Let618

θ(u) = (v, w) and θ(u ̸=(1,1̂)) = (v′, w′). If u[x] = (1, 1̂), then by Definition 2619

and by the property of monoidal actions v[x] = 1 and w[x] = 1̂. If u[x] ̸=620

(1, 1̂), then v[x] = v′[x] and w[x] = w′[x]. So π(v) = π(v′) and π̂(w) = π̂(w′).621

Hence π̃(u) = π̃(u ̸=(1,1̂)).622

Henceforth we work with the assumption that M and N are finite, and623

turn to the problem of effective construction of semidirect product of finite624

⊕-algebras. Thanks to Theorem 1, we can restrict our attention to induced625

⊕-algebras. Towards this, let (M, ·, τ, τ ∗, κ) and (N,+, τ̂ , τ̂ ∗, κ̂) be⊕-algebras626

induced by ⊕-semigroups (M,π) and (N, π̂) respectively. Further, let M ⋉627

N = (M × N, ·̃, τ̃ , τ̃ ∗, κ̃) denote the ⊕-algebra induced by M ⋉ N = (M ×628

N, π̃).629

The following lemma says that the binary operator ·̃ of M ⋉ N can be630

expressed using the binary operators · (of M) and + (of N). It follows easily631

22

from the definition of the induced operator ·̃ from π̃. We skip the proof as632

this is same as the classical case.633

Lemma 6. The operator ·̃ can be defined as follows:634

(m1, n1) ·̃ (m2, n2) = (m1 ·m2, n1m2 +m1n2).635

An easy consequence of the previous lemma is that if (m,n) is an idem-636

potent element of M ⋉N then m is also an idempotent element of M .637

Now we focus on the unary operators τ̃ and τ̃ ∗. In view of the second638

axiom in the definition of a ⊕-algebra, it suffices to show that these operators639

can be computed at idempotent elements of M ⋉N in terms of the algebra640

operators of M and N .641

Lemma 7. Let (e, n) be an idempotent element of M ⋉ N . Then (e, n)τ̃ =642

(eτ , neτ + (eneτ)τ̂), and (e, n)τ̃
∗
= (eτ

∗
, (eτ

∗
ne)τ̂

∗
+ eτ

∗
n).643

Proof. We present the proof only for τ̃ . By definition of the induced operator644

τ̃ , (e, n)τ̃ = π̃(u) where u = (e, n)ω is the ω-word over the domain (N, <)645

such that every position is mapped to (e, n). We first compute θ(u) = (v, w)646

according to the Definition 2. It is easy to see that v = eω and w is the647

ω-word whose first position is mapped to neτ and all other positions are648

mapped to eneτ . As a result, π(v) = eτ and π̂(w) = neτ + (eneτ)τ̂ . The649

proof now follows by observing that π̃(u) = (π(v), π̂(w)).650

Finally, the next lemma shows that the operator κ̃ of M ⋉ N can be651

computed using the algebra operators of M and N .652

Lemma 8. The operator κ̃ can be defined as follows:

{(m1, n1), . . . , (mp, np)}κ̃ = (m, {mn1m, . . . ,mnpm}κ̂)

where m = {m1, . . . ,mp}κ.653

Proof. Let S = {(m1, n1), . . . , (mp, np)}. Then if u is the perfect shuffle of654

S, that is, if u = Sη, then π̃(u) = Sκ. Consider θ(u) = (v, w). We claim655

v is the perfect shuffle of the set S1 = {m1, . . . ,mp}. Indeed for any two656

points x < y in dom(v), if suppose m1 is not present, then between the same657

points in dom(u) the element (m1, n1) is not present. Therefore v = Sη1 , and658

π(v) = Sκ1 = m (say). Furthermore for any point i in dom(v), the prefix v<i659

and the suffix v>i are both perfect shuffles of S1; so π(v<i) = π(v>i) = m.660

This implies w is the perfect shuffle of the set S2 = {mn1m, . . . ,mnpm}. The661

result follows as π̂(w) = Sκ2 , and π̃ = (π(v), π̂(w)) = (m,Sκ2).662

23

We now present an example of a semidirect product construction.663

Example 9. Consider M = U1 acting on N = U1 with a trivial left action664

and a non-trivial monoidal right action where 0 ∈ M maps everything in N665

to 1 ∈ N . The ⊛-algebra S = U1 ⋉ U1 is given in Figure 2. We write the666

element (i, j) as ij in this example.667

· 11 10 00 01 τ τ ∗

11 11 10 00 01 11 11

10 10 10 00 01 10 10

00 00 00 00 01 01 00

01 01 00 00 01 01 01

11 if S = {11}
01 if S ∩ {00, 01} ≠ ∅
10 otherwise

Sκ =

Figure 2: The ⊛-algebra S = U1 ⋉ U1

Example 10. Let Σ = {a, b}. Consider the language L of all words which668

contains the letter b, and has a non-empty suffix purely consisting of a’s, that669

is, L = Σ⊛ · {b} · Σ⊛ · {a}⊕. The morphism h : Σ⊕ → S such that h(a) = 10670

and h(b) = 01 recognizes L as L = h−1(00).671

4.3. Block Product672

Let (M,π) and (N, π̂) be two ⊕-semigroups. Recall that M1 is the ⊛-673

monoid associated to M . The set NM1×M1
of all functions from M1 ×M1

674

into N also forms a ⊕-semigroup under the componentwise product. This ⊕-675

semigroup can be simply viewed as the direct product of |M1| × |M1| copies676

of N . Reusing the operation π̂ of (N, π̂), we denote this ⊕-semigroup by677

(K, π̂) with underlying set K = NM1×M1
678

The block product ofM and N is denoted byM□N and is the semidirect
product M ⋉K (with underlying set M ×K) with respect to the canonical
‘actions’ (the following lemma proves that these are indeed compatible left
and right actions): for m ∈M and f ∈ K,

(mf)(m1,m2) = f(m1m,m2)

(fm)(m1,m2) = f(m1,mm2)

Lemma 9. Given ⊕-semigroups (M,π) and (N, π̂), consider the maps M ×679

NM1×M1 → NM1×M1
defined by (mf)(m1,m2) = f(m1m,m2) and N

M1×M1×680

24

M → NM1×M1
defined by (fm)(m1,m2) = f(m1,mm2). These are compati-681

ble left and right actions of (M,π) on (NM1×M1
, π̂). They are also monoidal682

if M and N are both ⊛-monoids.683

Proof. We focus only on the left action. Note that

(m′(mf))(m1,m2) = (mf)(m1m
′,m2)

= f(m1m
′m,m2)

= ((m′m)f)(m1,m2)

Hence m′(mf) = (m′m)f , thus proving the first axiom. For the second
axiom, note

(m(
∏
i∈α

fi))(m1,m2) = (
∏
i∈α

fi)(m1m,m2)

=
∏
i∈α

(fi(m1m,m2))

=
∏
i∈α

(mfi(m1,m2))

= (
∏
i∈α

mfi)(m1,m2)

So m(
∏

i∈α fi) =
∏

i∈αmfi, thus proving the second axiom. IfM has neutral684

element 1, then (1f)(m1,m2) = f(m1,m2) which means 1f = f . If N has685

neutral element 1′, then the neutral element g of K is the constant function686

to 1′. Clearly, mg = g. Thus the left action is monoidal if (M,π) and (N, π̂)687

are ⊛-monoids.688

The proof for the right action is symmetrical. We now establish the
compatibility of these two actions.

((mf)m′)(m1,m2) = (mf)(m1,m
′m2) = f(m1m,m

′m2)

(m(fm′))(m1,m2) = (fm′)(m1m,m2) = f(m1m,m
′m2)

Therefore (mf)m′ = m(fm′), that is, the actions commute and are compat-689

ible. This completes the proof.690

25

4.4. Block Product Principle691

In this subsection, we state and prove the block product principle. Roughly692

speaking the block product principle allows to express the formal languages693

recognized by the block product M□N in terms of languages recognized by694

M and N .695

Fix a finite alphabet Σ. As Σ⊕ is a free⊕-semigroup, a morphism from Σ⊕
696

to M□N =M ⋉K is simply given (determined) by a map h : Σ →M ×K.697

Sometimes we’ll denote its pointwise extension h̄ : Σ⊕ → (M×K)⊕ also by h.698

Further, composing this with the countable product π̃ ofM⋉K results into a699

morphism which, to a word u ∈ Σ⊕, associates the element π̃(h̄(u)) ∈M×K.700

This morphism may also be denoted by h (that is, h(u) may simply equal701

π̃(h̄(u))). The context will make it clear as to which interpretation of ‘h’702

applies. These slight abuses of notations are used several times in what703

follows in order to keep the notation simple and improve readability.704

Similar to the finite words case, the block product principle over countable705

words crucially utilises a sequential transducer induced by morphisms from706

the free ⊕-semigroup.707

Definition 4. Let φ : Σ⊕ → (M,π) be a morphism. The sequential trans-
ducer σφ associated with this morphism is a domain-preserving letter-to-
letter transducer of type σφ : Σ

⊕ → (M1 × Σ × M1)⊕ and is defined as
follows. For any word u ∈ Σ⊕, and for any x ∈ dom(u),

σφ(u)[x] = (φ(u<x), u[x], φ(u>x))

As mentioned earlier dom(σφ(u)) = dom(u).708

Remark 3. If the prefix u<x (resp. suffix u>x) is the empty word in Defi-709

nition 4, then we use the neutral element of M1 in place of φ(u<x) (resp.710

φ(u>x)).711

Next, given a morphism from a free ⊕-semigroup into a block product712

⊕-semigroup, we define two naturally arising morphisms into the individual713

⊕-semigroups of the block product.714

Definition 5. Let h : Σ⊕ → M□N be a morphism and let (ma, fa) = h(a)715

for each a ∈ Σ. We define the map/morphism h1 : Σ →M by letting h1(a) =716

ma for each letter a. We also define the map/morphism h2 : (M1×Σ×M1) →717

N as: for (m1, a,m2) ∈ (M1×Σ×M1), we have h2((m1, a,m2)) = fa(m1,m2).718

26

Going ahead, given a word u′ ∈ (M1 × Σ ×M1)⊕ and m1,m2 ∈ M , we719

define m1u
′m2 to be the word (with the same domain as u′) such that for a720

position x with u′[x] = (m′
1, a,m

′
2), (m1u

′m2)[x] = (m1m
′
1, a,m

′
2m2).721

Now we are ready to state a key technical lemma which will help us722

establish the block product principle.723

Lemma 10. Consider a morphism h : Σ⊕ →M□N =M ⋉K. For u ∈ Σ⊕,724

we have h(u) = (m, f) if and only if h1(u) = m and for all m1,m2 ∈ M1,725

we have h2(m1σ(u)m2) = f(m1,m2) where σ is the sequential transducer726

associated to h1.727

Proof. Fix u ∈ Σ⊕ and u′ = σ(u). Let h(u) ∈ (M × K)⊕ be the image728

of the pointwise extension of h applied to u. The words h1(u) ∈ M⊕ and729

h2(u
′) ∈ N⊕ are defined similarly. Observe that, for a position x of u, with730

u[x] = a and h(a) = (ma, fa), h(u)[x] = (ma, fa), h1(u)[x] = ma, u
′[x] =731

(h1(u<x), a, h1(u>x)) and h2(u
′)[x] = fa(h1(u<x), h1(u>x)). See Figure 3.732

x
↓ ⇝ (evaluation)

u : . . . a . . .

h : Σ →M□N h(u) : . . . (ma, fa) . . . (m, f)

h1 : Σ →M h1(u) : . . . ma . . . m

σ : Σ⊕ → (M1 × Σ×M1)⊕ u′ = σ(u) : . . . h1(u<x), a, h1(u>x) . . .

h2 : (M1 × Σ×M1) → N h2(u′) : . . . fa(h1(u<x), h1(u>x)) . . . f(1, 1)

Figure 3: The block product operational view

Consider the map θ : (M × K)⊕ → M⊕ × K⊕ from Lemma 3 (with733

K playing the role of N in the statement). Let θ(h(u)) = (v, w). Observe734

that v ∈ M⊕ and w ∈ K⊕. It is straightforward to check that v = h1(u).735

Further, by the definition of θ, for a position x of u, with h(u)[x] = (ma, fa),736

w[x] = h1(u<x)fah1(u>x).737

Now we relate the word w ∈ K⊕ with σ(u) ∈ (M1 ×Σ×M1)⊕. Towards738

this, consider the projection morphisms: for m1,m2 ∈M1, Πm1,m2 : K → N739

defined as Πm1,m2(g) = g(m1,m2). As expected, the pointwise extensions of740

Πm1,m2 are also denoted by Πm1,m2 .741

For further analysis, fix a choice of m1,m2 ∈ M1. Let x be a po-742

sition with u[x] = a and h(a) = (ma, fa). As observed earlier w[x] =743

27

h1(u<x)fah1(u>x) ∈ K, and u′[x] = (h1(u<x), a, h1(u>x)) ∈ M1 × Σ ×M1.744

Clearly m1u
′m2[x] = (m1h1(u<x), a, h1(u>x)m2).745

We proceed further with some simple calculations.746

Πm1,m2(w[x]) = (h1(u<x)fah1(u>x)) (m1,m2)

= fa(m1h1(u<x), h1(u>x)m2)
747

h2(m1u
′m2[x]) = h2 ((m1h1(u<x), a, h1(u>x)m2))

= fa(m1h1(u<x), h1(u>x)m2)

This reveals that for each position x, Πm1,m2(w[x]) = h2(m1u
′m2[x]). Thanks748

to the fact that both Πm1,m2(w) and h2(m1u
′m2) are defined pointwise, we749

have Πm1,m2(w) = h2(m1u
′m2). We let f denote the evaluation of w in K750

and exploit the fact that both Πm1,m2 and h2 are morphisms to conclude751

that, for m1,m2 ∈M , f(m1,m2) = h2(m1u
′m2) ∈ N .752

With h1(u) = m, the proof of the proposition is now immediate by Defi-753

nition 3 which asserts that h(u) = (m, f).754

We now use this lemma to derive the following result often referred to755

as the block product principle (see [23, 24] for the related wreath product756

principle in finite case).757

Theorem 5 (Block Product Principle). Let L ⊆ Σ⊕ be recognized by h :758

Σ⊕ → M□N via a subset F . Let h1 : Σ
⊕ → M be the induced projection759

morphism, and let σ : Σ⊕ → (M1 × Σ × M1)⊕ be the sequential letter-to-760

letter transducer associated to h1. Then L can be expressed as a finite union761

x
↓

. . . (ma, fa) . . .

v = h1(u) : . . . ma . . .

w : . . . h1(w<x)fah1(w>x) . . .

Figure 4: θ : (M ×K)⊛ → M⊛ ×K⊛ and θ(u) = (v, w)

28

of languages of the form L1 ∩ (
⋂
i,j

σ−1(Lij)) where L1 and Lij are recognized762

by M and N respectively, for 1 ≤ i, j ≤ |M1|.763

Conversely let g1 : Σ
⊕ → P be a morphism, and let θ : Σ⊕ → (P 1 × Σ ×764

P 1)⊕ be the letter-to-letter transducer associated to it. If X ⊆ (P 1×Σ×P 1)⊕765

is recognized by some ⊕-semigroup Q, then θ−1(X) is recognized by P□Q.766

Proof. Consider an element (m, f) ∈ M□N . By Lemma 10, for u ∈ Σ⊕,767

h(u) = (m, f) iff h1(u) = m and h2(m1σ(u)m2) = f(m1,m2) for all m1,m2 ∈768

M1.769

Next, for 1 ≤ i, j ≤ |M1|, we define the maps/morphisms hij : (M
1×Σ×770

M1) → N as follows: hij((m1, a,m2)) = h2((mim1, a,m2mj)). It is easy to771

see that, for any word u′ ∈ (M1 × Σ×M1)⊕, hij(u
′) = h2(miu

′mj).772

As a consequence, we get

L =
⋃

(m,f)∈F

(
h1

−1(m) ∩

(⋂
i,j

σ−1(hij
−1(f(mi,mj)))

))

This completes the proof for one direction.773

For the converse, suppose X ⊆ (P 1 × Σ × P 1)⊕ is recognized by some
morphism g2 : (P

1 × Σ × P 1)⊕ → Q via subset F ′ ⊆ Q. Consider the
map/morphism g : Σ⊕ → P□Q defined by g(a) = (g1(a), {(m1,m2) 7→
g2(m1, a,m2)}). For any word u ∈ Σ⊕, we know u ∈ θ−1(X) iff θ(u) ∈ X iff
g2(θ(u)) ∈ F ′. It is easy to verify that the map/morphism g2 induced by g
(cf. Definition 5) is same as g2. Therefore, by Lemma 10, g2(θ(u)) = q(1, 1)
if g(u) = (p, q). As a consequence, we get

X = g−1({(p, q) ∈ P□Q | q(1, 1) ∈ F ′})

This completes the proof.774

Example 11. Let Σ = {a, b}. Recall (see Example 5) that U1 recognizes the775

language L1 of words in which there is at least one occurence of a. We show776

that U1□U1 recognizes the language L of words where there is exactly one777

occurence of a. Let h : Σ⊕ → U1 be the morphism recognizing the language778

L1 as L1 = h−1(0), and let σ : Σ⊕ → (U1 × Σ × U1)
⊕ be the canonical779

transdsucer associated to it. If σ(w)[i] = (1, a, 1), then by definition of780

the transducer, we can say w[i] = a, w<i /∈ L1 and w>i /∈ L1. Consider781

the language L2 ⊆ (U1 × Σ × U1)
⊕ of words in which there is at least one782

29

occurence of the letter (1, a, 1) (note that by the behaviour of σ, there can be783

at most one such letter in the transducer output). Clearly L2 is recognized by784

U1 and L = σ−1(L2). Therefore by proposition 5, L is recognized by U1□U1.785

5. Block Product Closures and FO2 Logic786

Having set up the block product operation, we now present a characteri-787

zation using it. The two variable fragment of first order logic, FO2, has been788

studied extensively, particularly in the context of finite words. A block prod-789

uct characterization in terms of U1s is established in [16] over finite words.790

In this section, we show that the countable counterpart of the result holds as791

well. Before stating the characterization, we need to introduce some closures792

of block product iterations, and their properties.793

5.1. Iterated and Weakly Iterated Block Product794

Block product of ⊕-semigroup is not associative. This is easily evi-795

denced by a cardinality argument, for instance between (U1□U1)□U1 and796

U1□(U1□U1). Thus given a list of ⊕-semigroups, the order of product (equiv-797

alently the nesting of brackets) varies the resulting structure.798

We define two particular nestings which will be of interest to us. For799

a set P of ⊕-semigroups, an iterated block product is defined inductively as800

follows:801

1. S is an iterated block product for any S ∈ P .802

2. If S ′ is an iterated block product, then S ′□S is an iterated block prod-803

uct for any S ∈ P .804

The set of all iterated block products of a set P is denoted by □∗P . For805

a singleton set, we drop the set notation. For instance, (U1□U1)□U1 ∈806

□∗U1. For a sequence of ⊕-semigroups S1, . . . , Sk, we denote its iterated807

block product (. . . ((S1□S2)□S3) . . .)□Sk by □(S1, S2, . . . , Sk).808

The following lemma states that direct product of iterated block products809

is simulated by an iterated block product of the same constituents. The proof810

follows the corresponding one for classical semigroups (see [15, Appendix811

A.4]).812

Lemma 11. If M1 ≺ □(S1, . . . , Sk) and M2 ≺ □(S ′
1, . . . , S

′
l), then

M1 ×M2 ≺ □(S1, . . . , Sk, S
′
1, . . . , S

′
l)

30

The other important nesting is weakly iterated block product. Given a set P813

of ⊕-semigroups, it is defined inductively as follows:814

1. S is a weakly iterated block product for any S ∈ P .815

2. If S ′ is a weakly iterated block product, then S□S ′ is a weakly iterated816

block product for any S ∈ P .817

The set of all weakly iterated block products of a set P is denoted by818

□∗
wP . For instance, U1□(U1□U1) ∈ □∗

wU1. For a sequence of ⊕-semigroups819

S1, . . . , Sk, we denote S1□(S2□ . . . (Sk−1□Sk) . . .), its weakly iterated block820

product, by □w(S1, S2, . . . , Sk).821

Lemma 12. For any ⊕-semigroups S1, . . . , Sk, the following holds

(S1 × . . .× Sk−1)□Sk ≺ □w(S1, . . . , Sk)

Proof. This follows from a simple inductive argument on k. For k = 3,
consider the map h : (S1 × S2)□S3 → S1□(S2□S3) defined by: for any
((s1, s2), f) ∈ (S1 × S2)□S3, its image is (s1, f

′) where for any s, s′ ∈ S1,
and any s′2, s

′′
2 ∈ S2

f ′(s, s′) = (s2, {(s′2, s′′2) 7→ f((s, s′2), (s
′, s′′2))})

It can be verified that h is an injective morphism, thus showing (S1×S2)□S3822

is isomorphic to a sub-⊛-algebra of □w(S1, S2, S3).823

So for k <= 3, the statement holds. Assuming it holds for k − 1, we get

(S1 × . . .× Sk−1)□Sk ≺ (S1 × . . . Sk−2)□(Sk−1□Sk)

≺ □w(S1, . . . , Sk−2, (Sk−1□Sk))

= □w(S1, . . . , Sk)

This completes the proof.824

5.2. FO with two variables825

We now consider the two variable fragment FO2 of first order logic. Over
finite words, FO2 can talk about occurrence of letters and also about the
order in which they appear. Over countable linear orderings, it can also
say that there is no maximum position. For example, the following formula
states that every position is labelled by a and there is no maximum position.(

∀x ∃y x < y
)
∧
(
∀x a(x)

)
31

Analogously, FO2 can also talk about words with no minimum position.826

However, the two variable fragment is not as expressive as full first order.827

FO2 satisfies a downward property (similar to Löwenheim-Skolem downward828

theorem for first order logic): a satisfiable FO2 formula has a scattered satis-829

fying model [11]. Therefore, the language in Example 7, which says the linear830

ordering is dense and has at least two distinct positions, is not definable in831

FO2. We now present a decompositional characterization of FO2 languages.832

The proof follows the one for finite words in [16].833

Theorem 6. A language is definable in FO2 if and only if it is recognised by834

a weakly iterated block product of U1.835

Proof. The right to left inclusion is via induction on the number of blocks of
U1s. First, observe that languages recognized by a single U1 can be defined
in FO2. For the induction step, we utilise Theorem 5, the block product
principle. Let the hypothesis hold for algebra M ∈ □∗

wU1. We show that a
language L recognized by some morphism h : Σ → U1□M can be defined
in FO2. Let σ : Σ⊕ → (U1 × Σ × U1)

⊕ be the transducer associated with
the induced morphism h1 : Σ → U1. From the block product principle, L
can be expressed as a finite boolean combination of languages of the form
L1 and σ−1(L2) where L1 and L2 are recognized by U1 and M respectively.
By the induction hypothesis both L1 and L2 are FO

2 definable. So it suffices
to show that for an FO2 language L2 over the alphabet (U1 × Σ × U1) the
language σ−1(L2) is also FO2 definable. This can be shown via structural
induction on formula over the decorated alphabet; the base case is the non-
trivial case. The following formula accepts σ−1(L2) if L2 is defined by the
formula (0, a, 1)(x).

a(x) ∧
(
∃y y < x ∧

∨
h1(b)=0

b(y)
)
∧
(
∀y y > x⇒

∨
h1(c)=1

c(y)
)

Note that we used only two variables for the above translation. The836

other base cases are similar. We apply this translation inductively for other837

formulas.838

Now we show the left to right inclusion of the proof. First we note839

the following observation. Consider ℘(Σ), the powerset of the alphabet,840

as a ⊛-monoid where any word u ∈ (℘(Σ))⊕ is evaluated to the set of841

letters present in u. Notice that ℘(Σ) is essentially the direct product842

of |Σ|-many U1s. There exists a canonical morphism g : Σ⊕ → ℘(Σ)843

32

such that g(w) = {a | the letter a occurs in w}. The transducer associated844

with g is σ : Σ⊕ → (℘(Σ) × Σ × ℘(Σ))⊕ where, for a word w, we have845

σ(w)[i] = (g(w<i), w[i], g(w>i)) for every position i in dom(w). Observe that846

the word σ(w) carries, at every position i, the information about the set of847

letters occuring to the left (as well as right) of i in w.848

It is shown in [16] that FO2 has a “normal form” where the quantifier at849

the maximum depth along with its scope is of the form ∃x(a(x) ∧ x < y) or850

∃x (a(x) ∧ x > y). Our proof is via induction on the quantifier depth and851

the number of quantifiers at the maximum depth.852

Consider a FO2 sentence ϕ in its normal form. Consider a subformula853

∃x(a(x)∧x < y) at its maximum quantifier depth. We convert the formula ϕ854

into a formula ϕ′ over ℘(Σ)×Σ×℘(Σ) as follows. We substitute the chosen855

subformula ∃x(a(x)∧x < y) by a disjunction of letter formulas (Σ1, b,Σ2)(y)856

where Σ1,Σ2 ⊆ Σ, b ∈ Σ, and a ∈ Σ1. All remaining instances of letter857

formula c(x) is substituted by disjunction of letter formulas (Σ′
1, c,Σ

′
2)(x)858

where Σ′
1,Σ

′
2 ⊆ Σ. It is easy to verify by structural induction on FO2 formulas859

that w |= ϕ if and only if σ(w) |= ϕ′. In ϕ′, either the quantifier depth has860

gone down or the number of quantifiers at the maximum depth. Therefore by861

induction hypothesis, L(ϕ′) is recognized by M ∈ □∗
wU1. Note that L(ϕ) =862

σ−1(L(ϕ′)). By Proposition 5, we get L(ϕ) is recognized by ℘(Σ)□M which863

by Lemma 12 is a weakly iterated block product of U1s.864

6. First Order Logic with Infinitary Quantifiers - FO[∞]865

We now move on to characterizing higher classes of logics like first order866

logic. In the classical setting, FO has a nice block product based decom-867

positional characterization (see [15]). Our next theorem (Theorem 7) shows868

that a similar characterization holds for FO interpreted over countable words.869

Next we introduce an extended version of first order logic, namely FO[∞],870

that admits nice decompositional characterization using block products. In871

fact, the characterization results for FO[∞] subsume those for FO and its872

single variable fragment. In this section, our aim is to introduce this new873

logic, explain its motivation, and also place it in terms of well studied log-874

ics over countable words. We first provide block product characterization of875

⊕-semigroups recognizing FO languages over linear countable orderings.876

Theorem 7. A language over countable words is definable in FO if and only877

if it is recognized by an iterated block product of U1s.878

33

We skip the proof here since this theorem can be seen as a corollary of879

Theorem 10 in the next section.880

Our results for FO and its syntactic fragments (see Theorem 3, The-881

orem 4, Theorem 6 and Theorem 7) closely resemble the corresponding882

results over finite words. This can be attributed to the limited capability of883

the operators τ , τ ∗ and κ in the syntactic ⊕-algebra corresponding to FO884

languages. For instance, FO cannot define the language of words with infinite885

number of a’s [13] — a natural property in the context of countable words.886

The existential quantifier of FO is a threshold counting quantifier; it says887

there exists at least one position satisfying a property. Using multiple such888

first-order quantifiers, FO can count up to any finite constant but not more.889

Over countable words, it is natural to ask for stronger threshold quantifiers.890

We introduce natural infinitary extensions of the existential quantifier.891

Let I0 be the set of all non-empty finite orderings. For any number892

n ∈ N, we define the set In to be the set of all non-empty orderings of the893

form
∑

i∈Z αi where αi ∈ In−1 ∪ {ε} and is closed under finite sum. We894

define the infinitary rank (or simply rank) of a linear ordering α (denoted by895

∞-rank(α)) as the least n (if it exists) where α ∈ In. If there is no such n we896

say that the rank is infinite. For example, ∞-rank(ω) = ∞-rank(ω + ω) =897

∞-rank(ω∗ + ω) = 1, ∞-rank(ω2) = ∞-rank(ω2 + ω∗) = 2, and the rank of898

η = (Q, <) is infinite.899

We introduce the logic FO[∞] extending FO with infinitary quantifiers:

φ := a(x) | x < y | φ ∨ φ | ¬φ | ∃x φ | ∃∞0x φ | . . . | ∃∞nx φ | . . . n ∈ N

Note that all the variables are first order and they are interpreted as positions,900

that is, elements of the underlying linear ordering. More precisely, models901

of FO[∞] formula are of the form w,A where w is a countable word over902

Σ and A is an assignment of free (or unquantified) variables to positions in903

w. The semantics of the new infinitary quantifier ∃∞nx is: for a word w904

and an assignment A, we say w,A |= ∃∞nx φ if there exists a subordering905

X ⊆ dom(w) such that ∞-rank(X) = n and w,A[x = i] |= φ for all i ∈ X.906

Here A[x = i] denotes an assignment A′ which is defined as: A′(x) = i and907

A′(y) = A(y) for all y ̸= x. For example, ∃∞0x φ is equivalent to ∃x φ908

since both formulas are true if and only if there is at least one satisfying909

assignment for x. The rest of the semantics is standard.910

The logic FO[(∞j)j≤n] denotes the fragment containing only the infinitary
quantifiers ∃∞jx for all j ≤ n. Clearly the following natural hierarchy is

34

maintained among the logics:

FO = FO[(∞j)j≤0] ⊆ FO[(∞j)j≤1] ⊆ FO[(∞j)j≤2] ⊆ . . .

We also denote by FO1[(∞j)j≤n] the corresponding one variable fragment of911

FO[(∞j)j≤n].912

Example 12. The formula ∃∞1x a(x) denotes the set of all countable words913

with infinitely many positions labelled a. Since FO cannot express this, it914

shows FO ⊊ FO[(∞j)j≤1].915

Example 13. Consider the language L of all words with aωaω
∗
as a factor.916

Suppose we have a formula inf(x, y) that can express that there are infinitely917

many positions between x and y (assuming x < y). We define L using this918

formula as follows. Guess two ‘endpoints’ x and y of the factor aωaω
∗
. We919

express the following properties for the positions in this non-empty interval:920

(1) every position is labelled a, (2) every position is finite distance away921

from one endpoint and infinite distance away from the other, (3) the points922

that are finite distance away from the left endpoint have no maximum, and923

(4) the points that are finite distance away from the right endpoint have no924

minimum.925

1. ψ1(x, y) ::= ∀z x ≤ z ≤ y ⇒ a(z)926

2. ψ2(x, y) ::= ∀z x ≤ z ≤ y ⇒ (¬inf(x, z) ∧ inf(z, y)) ∨ (inf(x, z) ∧927

¬inf(z, y))928

3. ψ3(x, y) ::= ∀z (x < z < y∧¬inf(x, z)) ⇒ ∃z′ z < z′ < y∧¬inf(x, z′)929

4. ψ4(x, y) ::= ∀z (x < z < y∧¬inf(z, y)) ⇒ ∃z′ x < z′ < z∧¬inf(z′, y)930

The sentence ∃x∃y x < y∧ψ1(x, y)∧ψ2(x, y)∧ψ3(x, y)∧ψ4(x, y) defines the931

language L. It is easy to check that ∃∞1z x < z < y expresses the property932

inf(x, y). Therefore L is FO[∞] definable.933

We now place the logic FO[∞] amidst the logics studied in the context934

of countable words [10, 19]. The logic FO[cut] is an extension of FO that935

allows quantification over downward closed sets, also known as Dedekind-936

cuts. Syntactically, we write ∃cutX to existentially quantify a set X where937

X is downward closed because of the quantifier. The logic WMSO allows938

quantification over finite subsets of positions. We write ∀finX to universally939

quantify over finite sets; here X is a finite set because of the quantifier.940

35

Example 14. Let α be an ordering which contains an ω sequence of positions941

(ai)i∈N. Now consider the set X = {x ∈ α | x < ai for some i ∈ N}.942

It is clearly a downward closed set and thus defines a cut. Furthermore943

this set has no maximum position, since for any x ∈ X, if x < ai then944

there exists z ∈ X where x < ai < z < ai+1. Therefore we have shown945

that any ordering containing an ω sequence of positions contains a right-946

open cut (that is, the downward closed set corresponding to the cut has no947

maximum element). Conversely, if an ordering contains a right-open cut,948

then clearly it has an ω sequence of positions. Therefore the FO[cut] formula949

∃cutX ∃x X(x) ∧ ∀y X(y) ⇒ ∃z X(z) ∧ y < z describes the language of all950

countable words containing an ω sequence of positions.951

Example 15. Recall from Example 13 the formula inf(x, y) that expresses952

there are infinitely many positions between x and y (assuming x < y). It was953

shown that the language L of all words with aωaω
∗
as a factor is definable954

if inf(x, y) is definable. Now note that inf(x, y) can be defined in WMSO955

as ∀finX ∃z x < z < y ∧ ¬X(z). Therefore L is WMSO definable. It is956

also possible to define inf(x, y) in FO[cut] because if there are infinitely957

many positions between x and y then there must be an ω sequence or an ω∗
958

sequence of positions in this interval, and FO[cut] can guess an appropriate959

cut between x and y to check this. So L is also FO[cut] definable.960

In fact, we claim that both first order logic with cuts (FO[cut]) and weak961

monadic second order logic (WMSO) can define all the languages definable962

in FO[∞].963

Theorem 8. FO[∞] ⊆ FO[cut] ∩WMSO 2
964

Proof. We first show by structural induction that there is an equivalent
WMSO formula for any FO[∞] formula. It is easy to observe that the hy-
pothesis holds for the atomic case, first order quantification and boolean
combinations. Let us consider the formula ϕ = ∃∞kx ψ(x). By our in-
ductive hypothesis there is a WMSO formula ψ̂(x) equivalent to ψ(x). We
show that the WMSO formula Ψk inductively defined is equivalent to ϕ: Let
Ψ0 ::= ∃x ψ̂(x) and

Ψn ::= For any finite set X = {x1, . . . , xk} , one of the factors [−, x1], . . . ,
[xi, xi+1], . . . , [xk,−] can be split into at least two parts each satisfying Ψn−1

2Here, FO[∞], FO[cut], WMSO denote the languages defined by the respective logic.

36

This can be expressed in WMSO. Note notempty(X) = ∃x X(x) says that
X is not empty set. Let consec(X, x, y) express that x, y ∈ X and x < y
and there is no z ∈ X such that x < z < y; that is x and y are consecutive
in set X. Let min(X, x) denote that x is the minimum position in X, and
max(X, x) denote that x is the maximum position in X. Then we define Ψn

to be

∀finX
(
notempty(X) ⇒

∃x, y, z consec(X, x, y) ∧ x < z < y ∧Ψn−1[> x,< z] ∧Ψn−1[> z,< y]) ∨
∃x, z

(
min(X, x) ∧ z < x ∧Ψn−1[> z,< x] ∧Ψn−1[< z]

)
∨

∃x, z
(
max(X, x) ∧ x < z ∧Ψn−1[> x,< z] ∧Ψn−1[> z]

))
We claim that Ψn is satisfied by all words where the ψ-labelled set of positions965

α has ∞-rank(α) ≥ n. It is clearly true for the base case Ψ0. Assume the966

hypothesis is true for all j < n. The formula Ψn says that for any finite967

number of partitions α1, α2, . . . , αk, of the ψ-labelled set of positions α, there968

is at least one αi that can be split into two parts containing ψ-labelled set of969

positions α1
i and α

2
i such that ∞-rank(α1

i) ≥ n− 1 and ∞-rank(α2
i) ≥ n− 1.970

In short, finite partitioning of ψ-labelled set of positions with rank n − 1 is971

not possible or ∞-rank(α) ≥ n. Therefore the formula Ψk is equivalent to972

the formula ϕ.973

Next we give an FO[cut] formula equivalent to an FO[∞] formula. Like
in the previous proof, let us look at the case ϕ = ∃∞kx ψ(x) where ψ(x) is
equivalent to an FO[cut] formula ψ̂(x). We show ϕ is equivalent to Φk where
Φn is inductively defined as: Φ0 ::= ∃x ψ̂(x) and Φn is

There is a cut towards which there is an ω (or ω∗) sequence

of factors each satisfying Φn−1

Let X be a non-empty cut. We give an FO[cut] formula omegaseq(X) that
says there is an ω sequence of factors satisfying Φn−1 approaching towards
the cut X.

omegaseq(X) ::= ∀y X(y) ⇒ ∃z X(z) ∧ y < z ∧ Φn−1[> y,< z]

The formula says there is an ω sequence of positions such that each factor
between consecutive positions contains ψ-labelled subsequence of rank ≥
n− 1. Similarly, there is a formula omegaseq∗(X) that state the existence of

37

an ω∗ sequence approaching the cut. The formula Φn will guess this cut and
verify the ω or ω∗ sequence is non-empty as given below.

Φn ::= ∃cutX
(
∃x X(x) ∧ omegaseq(X)

)
∨
(
∃x ¬X(x) ∧ omegaseq∗(X)

)
Inductively arguing about the correctness of the formula, it’s quite clear that974

Φn expresses existence of set of ψ-labelled positions of rank ≥ n.975

7. Product Decompositions for FO[∞]976

We now apply our algebraic tools to give decompositional characteriza-977

tions of FO[∞] and its one variable fragments. Our approach uses the block978

product principle that we developed in subsection 4.4 to directly show equiv-979

alence of languages definable in some logic and languages recognized by some980

family of ⊕-semigroups.981

We first identify a family of simple ⊛-algebras that will help characterize982

the logic. For n ≥ 0, let ∆n = ({1, δ0, δ1, . . . , δn}, ·, τ, τ ∗, κ) be an ⊛-algebra983

where984

• δi · δj = δj · δi = δj for all 0 ≤ i ≤ j ≤ n985

• δk
τ = δk

τ∗ = δk+1 for all 0 ≤ k < n, and δn
τ = δn

τ∗ = δn986

• Sκ = δn for all S\{1} ≠ ∅987

It is easy to verify that ∆n is an idempotent and commutative ⊛-algebra.988

Further, observe that ∆n is generated by the element δ0.989

7.1. FO[∞] with single variable990

In this subsection we show that languages recognized by ∆n are definable991

in FO1[(∞j)j≤n]. It easily follows that the direct product of ∆n recognize992

exactly those languages definable in the one variable fragment, which is our993

next theorem.994

Theorem 9. Languages recognized by direct product of ∆n are exactly those995

definable in FO1[(∞j)j≤n].996

Proof. We first show that languages recognized by ∆n are those definable997

in FO1[(∞j)j≤n]. In this proof, we adopt the convention that 1 = δ−1.998

Let h : Σ⊕ → ∆n be a morphism. It suffices to show that for any element999

38

δm ∈ ∆n, h
−1(δm) is definable in FO1[(∞j)j≤n]. Let ↑m denote the set {δm′ |1000

m′ ≥ m}. Note that for any δm ̸= δn, h
−1(δm) = h−1(↑m) \ h−1(↑(m + 1)).1001

Also h−1(δn) = h−1(↑n). Therefore, it is sufficient to show that h−1(↑m) is1002

definable in FO1[(∞j)j≤n].1003

For each m = {−1, 0, . . . , n}, we define the language L(m) as the set of1004

all words with at least one of the following two properties1005

• there exists a letter a in w such that h(a) ∈ ↑m1006

• there is a nonempty subordering α ⊆ dom(w) whose all positions are1007

labelled a, the ∞-rank of α is j, h(a) = δi ̸= δ−1 and i+ j ≥ m1008

The following FO1[(∞j)j≤n] sentence defines the language L(m).∨
a∈Σ, h(a)∈↑m

∃x a(x) ∨
∨

a∈Σ, h(a)=δi ̸=1
i+j≥m

∃∞jx a(x)

We show that L(m) = h−1(↑m) by induction on the m. For m = −1, this1009

clearly holds as ↑{−1} = ∆n, and therefore h−1(↑{−1}) = Σ⊕, and also1010

L(−1) = Σ⊕. To prove the induction hypothesis assume the claim holds for1011

all m′ < m. Consider a word w. By a second induction on the height of an1012

evaluation tree (T, h) for w we show for all words v ∈ T , v ∈ h−1(↑m) if and1013

only if v ∈ L(m). In each of the following cases we assume that the children1014

of the node (if they exist) satisfy the second induction hypothesis.1015

1. Case v is a letter: The hypothesis clearly holds1016

2. Case v is a concatenation of two words v1 and v2: There are two cases1017

to consider - {v1, v2} ∩ h−1(↑m) ̸= ∅ or not. In the first case, let for an1018

i ∈ {1, 2} we have h(vi) ∈ ↑m and vi ∈ L(m). Clearly h(v) = h(v1v2) ∈1019

↑m and v ∈ L(m). For the second case, let us assume h(v1) = δm1 and1020

h(v2) = δm2 such that m1 ≤ m2 < m and both v1, v2 /∈ L(m). From the1021

definition of ∆n, it follows that h(v) = h(v1v2) = δm2 . For any a ∈ Σ,1022

let the a-labelled suborderings in v1 and v2 be α1 and α2 respectively1023

where ∞-rank(α1) ≤ ∞-rank(α2) = j. It follows from the definition1024

that ∞-rank(α1 + α2) = j and therefore v /∈ L(m).1025

3. Case v is an ω-sequence of words ⟨v1, v2, . . . , ⟩ such that h(vi) = δm′ for1026

all i, and δm′ is an idempotent (in ∆n all elements are idempotents):1027

39

Firstly, if m′ ≥ m and vi ∈ L(m) then clearly h(v) ∈ ↑m and v ∈1028

L(m). The non-trivial case is m′ = m− 1. From the second induction1029

hypothesis vi /∈ L(m) for all i. If δm′ = 1, then h(v) = 1 /∈ ↓m and1030

v /∈ L(m). Otherwise from the definition of ∆n, h(v) = (δm′)τ = δm,1031

and each factor vi contains some letter mapping to non-neutral elements1032

of ∆n. We need to show that v ∈ L(m). By first induction hypothesis,1033

each vi has a letter ai and an ai-labelled set of positions αi such that1034

h(ai) = δki and ∞-rank(αi) = k′i such that ki + k′i ≥ m′. Since |Σ| is1035

finite, ω-many of these ais are the same letter, say a. Let h(a) = δk.1036

Then for all i such that ai = a, we know ∞-rank(αi) ≥ k′ where1037

k + k′ ≥ m′. Hence the a-labelled set of positions α =
∑

i:ai=a
αi in v1038

satisfies ∞-rank(α) ≥ k′+1, and since k+k′+1 ≥ m we get v ∈ L(m).1039

4. Case v is an ω∗-sequence: This case is symmetric to the above case.1040

5. Case v is
∏

i∈η vi,
∏

i∈η h(vi) is a perfect shuffle of {h(vi)|i ∈ η} = S1041

and h(v) = Sκ: It is easy to see that the induction hypothesis holds1042

if S = {1}. So, assume S\{1} ̸= ∅. Hence h(v) = δn. Since, there1043

are η-many of children u where h(u) ̸= 1, there is a letter a such that1044

h(a) ̸= 1 and a-labelled set of positions in v has infinite ∞-rank. Thus1045

v ∈ L(n).1046

For the other direction, note that ∆n recognizes the language ∃∞ix (a(x) ∨1047

b(x)) for i ≤ n by the morphism h(a) = h(b) = δn−i and for c /∈ {a, b}, h(c) =1048

1; the language then is h−1(δn). The proof follows from the fact that a one1049

variable quantifier free formula is essentially a disjunction of letter predicates1050

and therefore the boolean combination of sentences can be recognized by1051

direct products of ∆n.1052

We now provide an equational algebraic characterization of the syntactic1053

⊛-algebras of languages definable in FO1[(∞j)j≤n]. This is achieved by for-1054

mulating an equational description of algebras which divide direct product1055

of ∆n.1056

We begin with the definition of a shuffle-n-symmetric-trivial algebra. We1057

say that a⊕-algebra (M, ·, τ, τ ∗, κ) is shuffle-n-symmetric-trivial ifM satisfies1058

the following identities: 1) x · x = x – every element of M is idempotent,1059

2) x · y = y · x – M is commutative, 3) xτ = xτ
∗
, (xy)τ = xτyτ , and 4)1060

xτ
n

1 · xτn2 · . . . · xτnp = {x1, . . . , xp}κ where xτ
0
= x and xτ

i+1
=
(
xτ

i
)τ

. Note1061

40

that the definition of ‘shuffle-trivial’ from subsection 3.1 matches that of1062

shuffle-n-symmetric-trivial when n is 0.1063

Proposition 1. LetM be a finite ⊛-algebra. ThenM divides a direct product1064

of ∆n iff M is shuffle-n-symmetric-trivial.1065

Proof. It is clear that ∆n is shuffle-n-symmetrical trivial and this property1066

is preserved under direct product and division. This shows that if M divides1067

a direct product of ∆n then it is shuffle-n-symmetric-trivial.1068

For the converse, we fix a shuffle-n-symmetric-trivial M . It is easy to1069

deduce that, for any element m of M , the subalgebra ⟨m⟩ of M generated1070

by m is isomorphic to ∆k for some k ≤ n. In fact, the underlying set of1071

⟨m⟩ consists of elements {1,m = m2,mτ = mτ∗ , . . . ,mτk = mτk+1
= mκ}1072

and the well-defined morphism obtained by sending the generator of ∆k to1073

m provides an isomorphism between ∆k and ⟨m⟩. We also have a morphism1074

hm from ∆n to M which maps the generator of ∆n to m such that the image1075

of hm is precisely ⟨m⟩.1076

Let S = {m1,m2, . . .mp} be a generating set of M . An important conse-1077

quence of shuffle-n-symmetric-triviality of M is that every element of M can1078

be expressed as mτ i1
1 mτ i2

2 · · ·mτ ip
p where 0 ≤ i1, i2, . . . , ip ≤ n.1079

We can now construct a map h :
∏p

1 ∆n →M by combining the individual
morphisms hmi

: ∆n →M as follows:

h((n1, n2, . . . , np)) = hm1(n1)hm2(n2) · · ·hmp(np)

It can be argued that h is a surjective morphism. We skip the straightforward1080

details. This shows that M is a homomorphic image of a direct product of1081

∆n and completes the proof.1082

Combining the above proposition with Theorem 9, we conclude that a1083

language is definable in FO1[(∞j)j≤n] iff its syntactic ⊛-algebra is shuffle-1084

n-symmetric trivial. Thus we also obtain a decidable equational algebraic1085

characterization of the one variable fragment FO1[(∞j)j≤n].1086

7.2. Block Product Decompositions for FO[∞]1087

In this section, we consider the full logic FO[(∞j)j≤n] and observe that1088

they define exactly those languages recognized by block products of ∆n. First1089

we show relativizing FO[(∞j)j≤n] formulas with respect to first order vari-1090

ables works as intended. We’ll only use this result for FO[(∞j)j≤n] sentences1091

though. See [15, Lemma VI.1.3] for a similar proof for FO.1092

41

Lemma 13. Let φ ∈ FO[(∞j)j≤n] be a formula. Consider any word w with
an assignment A that maps elements of free(φ) to positions less than some
position i ∈ dom(w). If x /∈ free(φ), then we can construct a relativized
formula φ<x with free(φ<x) = free(φ) ∪ {x} such that

w,A[x = i] |= φ<x iff w<i,A |= φ

Proof. Proof is via structural induction on FO[(∞j)j≤n] formula. We only1093

show the case for the extended infinitary quantifier. Let φ = ∃∞ky ψ. We1094

note that w<i,A |= ∃∞ky ψ if and only if there is a subordering X ⊆1095

dom(w<i) such that ∞-rank(X) = k and for all j ∈ X, w<i,A[y = j] |= ψ.1096

It follows, from the inductive hypothesis, that this is true if and only if1097

w,A[x = i] |= ∃∞ky(ψ<x ∧ y < x). This completes the proof.1098

Theorem 10. The languages defined by FO[(∞j)j≤n] are exactly those rec-1099

ognized by finite block products of ∆n. Moreover, the languages defined by1100

FO[∞] are exactly those recognized by finite block products of {∆n | n ∈ N}.1101

Proof. We first show that languages recognizable by finite block products of1102

∆n are definable in FO[(∞j)j≤n]. The proof is via induction on the number1103

of ∆n in an iterated block product. The base case follows from Theorem 9.1104

For the inductive step, consider a morphism h : Σ⊕ → M□∆n. Let1105

h1 : Σ
⊕ → M be the induced morphism to M , and let σ be the associated1106

transducer. By the block product principle (see Proposition 5), any language1107

recognized by h is a boolean combination of languages L1 ⊆ Σ⊕ recognized by1108

M and σ−1(L2) where L2 ⊆ (M×Σ×M)⊕ is recognized by ∆n. By induction1109

hypothesis, L1 is FO[(∞j)j≤n] definable. By the base case L2 is FO[(∞j)j≤n]1110

definable but over the alphabetM×Σ×M . To complete the proof, one needs1111

to show for any word w ∈ Σ⊕ and assignment s, and for any FO[(∞j)j≤n]1112

formula φ over the alphabet M ×Σ×M , there exists a FO[(∞j)j≤n] formula1113

φ̂ over the alphabet Σ such that w, s |= φ̂ if and only if σ(w), s |= φ. For1114

instance, suppose φ = ∃∞ix (m1, c,m2)(x), and inductively ϕm1 (resp. ϕm2)1115

are FO[(∞j)j≤n] sentences characterizing words over Σ⊕ that are mapped1116

by h1 to m1 (resp. m2). Then φ̂ is ∃∞ix ((ϕm1)<x ∧ c(x) ∧ (ϕm2)>x), where1117

(ϕm1)<x is the formula ϕm1 relativized to less than the variable x. This way,1118

one proves that σ−1(L2) is FO[(∞j)j≤n] definable. This completes the proof1119

of this direction.1120

The other direction of the proof is a standard generalization of the proof1121

for FO in the classical setting [15]. It progresses via structural induction on1122

42

FO[(∞j)j≤n] formulas. We know that FO[∞] has letter and order predicates,1123

is closed under boolean operations and infinitary existential quantifications.1124

Inductively we prove that for any FO formula φ = ϕ(x1, x2, . . . , xn), the1125

language L(φ) ⊆ (Σ× {0, 1}n)⊕ over extended alphabet is recognized by an1126

iterated block product of U1. In this proof, we call a word/model valid if the1127

‘row’ for each variable contains exactly one position labelled 1.1128

For the base case, let φ = a(x). The language of this formula is the set1129

of all valid words with an occurence of (a, 1) (validity of the word enforces1130

exactly one occurence of (a, 1)). Recalling Example 11 one can see that1131

checking validity of words can be done by direct product of copies of U1□U1.1132

In particular, the language for a(x) can be recognized by U1× (U1□U1) (also1133

recall Example 5), and by Lemma 11, this divides an iterated block product1134

of U1s. Similarly, it is easy to show that language defined by x < y is recog-1135

nized by iterated block products of U1. Boolean combinations of first order1136

formulas can be inductively recognized by direct product of the algebras for1137

individual formulas (extra validity checks, if required, for instance, for nega-1138

tion, can be handled as per our discussion so far). The non-trivial case is1139

when ϕ = ∃∞ix ψ (for i ≤ n). Let L(ψ) ⊆ (Σ×{0, 1})⊕ be inductively recog-1140

nized by h : (Σ× {0, 1})⊕ → M ∈ □∗∆n, that is, there is a set F ⊆ M such1141

that h−1(F) = L(ψ). We prove that M□∆n recognizes L(ϕ). Once again we1142

use the block product principle. Consider two morphisms g1 : Σ
⊕ → M and1143

g2 : (M ×Σ×M)⊕ → ∆n. Let g1(a) = h((a, 0)) and suppose g2((m1, a,m2))1144

equals δ0 ifm1·h((a, 1))·m2 ∈ F , and it equals 1 otherwise. Let σ be the trans-1145

ducer corresponding to g1. We show that w |= ϕ if and only if g2(σ(w)) = δj1146

where j ≥ i. This would imply L(ϕ) = σ−1(g−1
2 ({δi, δi+1, . . . , δn})) and by1147

the block product principle, this is recognized by M□∆n.1148

Let w |= ϕ. If αψ is the set of all positions of w where ψ is true, then1149

∞-rank(αψ) ≥ i. Let l ∈ αψ and w(l) = a. We can split w at the position l1150

as w1aw2 and by logic semantics w0
1(a, 1)w

0
2 |= ψ (for any u ∈ Σ⊕, we denote1151

by u0 the word over the same domain with u0[i] = (u[i], 0)). If h(w0
1) = m11152

and h(w0
2) = m2, then m1 · h((a, 1)) ·m2 ∈ F . Also, σ(w)[l] = (m1, a,m2).1153

So, g2 maps every position l ∈ αψ to δ0, and hence g2(σ(w)) = δj for some1154

j ≥ i. Conversely, suppose g2(σ(w)) = δj where j ≥ i. Let α0 denote the1155

positions of σ(w) for which g2 maps to δ0. Since g2 maps each letter to δ01156

or 1, we get ∞-rank(α0) ≥ i. Let l ∈ α0. If σ(w)[l] = (m1, a,m2), then1157

m1 · h((a, 1)) ·m2 ∈ F . This means ψ is true at position l for w. Since l is1158

any position in α0, we have that w |= ϕ.1159

43

8. No Finite Block Product Basis Results1160

The main goal of this section is to prove that FO[∞],FO[cut], and the1161

semantic class FO[cut] ∩WMSO over countable words do not admit a block1162

product based characterization which uses only a finite set of ⊕-algebras1163

(Theorem 12). This is achieved by defining a suitable parameter called gap-1164

nesting-length for ⊕-algebras (Definition 6), and our main technical lemma of1165

this section, Lemma 18, that shows the parameter value does not increase on1166

division and block product (for block product, we assume aperiodicity). This1167

lemma also establishes that the infinite syntactic hierarchy inside FO[∞] to1168

be strict (Theorem 11).1169

The result of Theorem 12 is in stark contrast to our previous result over1170

FO, Theorem 7 which shows that a language of countable words is FO-1171

definable if and only if it is recognized by a strong iteration of block product1172

of copies of the single ⊛-algebra U1 (alternately ∆0). In the last section1173

Theorem 10 shows that FO[∞] has a block product characterization using1174

the natural infinite basis set {∆n}n∈N. The results in this section prove that1175

this is optimal.1176

Fix a finite ⊕-algebra (M, ·, τ, τ ∗, κ). For every n ∈ N, we define the1177

operation γn : M → M which maps x to xγn . The inductive definition of1178

γn is as follows (recall that idempotent power is denoted by !): xγ0 = x! and1179

xγn = ((xγn−1)τ (xγn−1)τ
∗
)
!
.1180

Lemma 14. Let M be a finite ⊕-algebra. For each m ∈ M , there exists1181

n ∈ N such that ∀n′ ≥ n,mγn = mγn′ .1182

Proof. Consider the following sequence: a0 = m! and aj+1 = ((aj)
τ · (aj)τ

∗
)
!
.1183

Clearly, ai = mγi ; we prove this sequence becomes constant beyond a finite1184

index. By ⊕-algebra axioms x · xτ = xτ and xτ
∗ · x = xτ

∗
, we get that1185

aj+1 = aj · aj+1 = aj+1 · aj for all j. This and the fact that every element1186

of this sequence is an idempotent further implies that for all i ≤ j, we have1187

aj = ai · ai+1 . . . aj.1188

Since M is finite, there is an i and a j > i such that ai = aj. Let us
assume that j is the smallest index strictly larger than i such that ai = aj. It
is sufficient to show that j = i+1. We know aj = aj ·aj−1. Since ai = aj, we
get that ai = ai ·aj−1. As i ≤ j−1, we also know that aj−1 = ai ·ai+1 . . . aj−1.
Therefore,

ai = ai · aj−1 = ai · ai · ai+1 . . . aj−1 = ai · ai+1 . . . aj−1 = aj−1

44

By the minimality of j, we get that j − 1 = i, that is, j = i+ 1.1189

Definition 6. The gap-nesting-length of a ⊕-algebra M , denoted gnlen(M),1190

is the smallest n such that for all m ∈M , mγn = mγn+1 .1191

It follows from the previous lemma that a finite ⊕-algebra has a finite gap-1192

nesting-length. It is a simple computation that, for each k, gnlen(∆k) = k.1193

The main technical lemma of this section is Lemma 18 that states that the1194

gap-nesting-length parameter does not increase on division and block product1195

of ⊕-algebras. This is the key to our no-finite-basis theorems. The following1196

couple of results will help us prove the main lemma.1197

Lemma 15. Consider ⊕-algebra M has compatible left and right actions on1198

⊕-algebra P . Let m,m′ ∈M and p ∈ P . Then mpγnm′ = (mpm′)γn1199

Proof. We first prove that mp!m′ = (mpm′)!. By action axioms (recall B-1200

2 for left action), it is easy to see that mpkm′ = (mpm′)k for any natural1201

number k ≥ 1. Note that there exists k ∈ N such that pk = p! and (mpm′)k =1202

(mpm′)!. Then mp!m′ = mpkm′ = (mpm′)k = (mpm′)!.1203

The proof is now by induction on n. For n = 0, we have mpγ0m =1204

mp!m = (mpm)! = (mpm)γ0 .1205

For the inductive step, note that

mpγnm′ = m((pγn−1)τ · (pγn−1)τ
∗
)!m′ defn. of γn

= (m((pγn−1)τ · (pγn−1)τ
∗
)m′)!

= ((m(pγn−1)τm′) · (m(pγn−1)τ
∗
m′))! action axiom for ·

= ((m(pγn−1)m′)
τ · (m(pγn−1)m′)

τ∗
)! action axiom for τ , τ ∗

= (((mpm′)γn−1)
τ · ((mpm′)γn−1)

τ∗
)! induction hypothesis

= ((mpm′)γn defn. of γn

This completes the proof.1206

Lemma 16. LetM and N be two ⊕-algebras whereM has compatible actions1207

on N . Let (m,n), (m′, n′) ∈ M ⋉ N such that (m,n) = (m′, n′)!. Then1208

m = (m′)!. Further, if M is aperiodic3, then mnm = (mn′m)!.1209

3we say a ⊕-algebra is aperiodic if its underlying semigroup is aperiodic

45

Proof. Note that by concatenation rule of semidirect product algebra, we1210

have (m,n)2 = (m2, nm +mn). Since (m,n) is an idempotent, we get m =1211

m2, that is, m ∈ M is an idempotent. Also, we get n = nm + mn which1212

implies mnm = mnm2 +m2nm. Using the fact that m = m2, we get that1213

mnm is an idempotent in N .1214

Suppose k ∈ N such that of (m,n) = (m′, n′)k. An easy calculation shows1215

that m = (m′)k and n =
∑k−1

i=0 (m
′)in′(m′)k−i−1. By our earlier argument, we1216

know m is an idempotent, so m = (m′)!.1217

If M is aperiodic, then (m′)j = m for j ≥ k. Hence mnm = (mn′m)k.1218

Since mnm is an idempotent, we get mnm = (mn′m)!.1219

Lemma 17. Consider (m, f), (m′, f ′) ∈M□N such that (m, f) = (m′, f ′)γn.1220

Then m = (m′)γn. If M is aperiodic, then mfm = (mf ′m)γn.1221

Proof. The proof is by induction on n. For the base case of n = 0, we have1222

(m, f) = (m′, f ′)γ0 = (m′, f ′)!. By Lemma 16, m = (m′)! = (m′)γ0 and if M1223

is aperiodic, mfm = (mf ′m)! = (mf ′m)γ0 . This proves the base case.1224

For the inductive step, let (m, f) = (m′, f ′)γn = ((m′, f ′)γn−1)γ1 . Also
let (e, g) = (m′, f ′)γn−1 . So (m, f) = (e, g)γ1 . By induction hypothesis, e =
(m′)γn−1 and m = eγ1 implying m = ((m′)γn−1)γ1 = (m′)γn . IfM is aperiodic,
then by induction hypothesis, ege = (ef ′e)γn−1 and mfm = (mgm)γ1 . Note
that since m = eγ1 = (eτ · eτ∗)!, we have m · e = e ·m = m. Therefore

mfm = (mgm)γ1

= (m(ege)m)γ1

= (m(ef ′e)γn−1m)γ1 = ((mf ′m)γn−1)γ1 = (mf ′m)γn

This completes the proof.1225

We are now ready to state and prove our main technical lemma of this1226

section.1227

Lemma 18. Let M and N be two ⊕-algebra.1228

1. If M divides N then gnlen(M) ≤ gnlen(N).1229

2. IfM , N are aperiodic then gnlen(M□N) ≤ max (gnlen(M), gnlen(N)).1230

Proof. 1. If M is a subalgebra of N , then the property is easily verified.1231

Let’s suppose h : N →M is a surjective morphism, and gnlen(N) = k.1232

46

For any m ∈ M , there exists n ∈ N such that h(n) = m. It is1233

straightforward to check that mγk = h(nγk) = h(nγk+1) = mγk+1 . This1234

completes the proof for division.1235

2. Consider aperiodic M and N with max (gnlen(M), gnlen(N)) = k. We1236

show that gnlen(M□N) ≤ k. Note that, for any m ∈ M and any1237

n ∈ N , mγk = mγk+1 and nγk = nγk+1 .1238

Let (m, f) ∈M□N be an arbitrary element. We show that (m, f)γk =1239

(m, f)γk+1 . Let (e, g) = (m, f)γk . Then (e, g)γ1 = (m, f)γk+1 . Also by1240

Lemma 17, e = mγk and ege = (efe)γk . Since M and N have gap-1241

nesting-length less than or equal to k, we get e = mγk = mγk+1 = eγ11242

and ege = (efe)γk = (efe)γk+1 = (ege)γ1 . Now we use the fact that in1243

any aperiodic ⊕-algebra x = xγ1 implies x = xτ · xτ∗ by the following1244

argument — x = (xτ ·xτ∗)! = (xτ ·xτ∗)! ·(xτ ·xτ∗) = x·(xτ ·xτ∗) = xτ ·xτ∗ .1245

Therefore we have e = eτ · eτ∗ and ege = (ege)τ + (ege)τ
∗
. Since (e, g)

is an idempotent by definition of the γi operation, we get that e is an
idempotent in M . Therefore

(e, g)τ · (e, g)τ
∗

= (eτeτ
∗
, geτeτ

∗
+ (egeτeτ

∗
)
τ
+ (eτeτ

∗
ge)

τ∗
+ eτeτ

∗
g)

= (e, ge+ (ege)τ + (ege)τ
∗
+ eg)

= (e, ge+ ege+ eg) = (e, g)3 = (e, g)

Hence (m, f)γk+1 = (e, g)γ1 = (e, g) = (m, f)γk . This completes the1246

proof for the block product operation.1247

An important application of Lemma 18 is that the syntactic hierarchy1248

inside FO[∞] can be shown to be strict.1249

Theorem 11. FO[(∞j)j≤n] ⊊ FO[(∞j)j≤n+1].1250

Proof. By Theorem 10, the syntactic ⊕-algebra of any FO[(∞j)j≤n]-definable1251

language divides an iterated block product of copies of ∆n. By Lemma 181252

and the fact that gnlen(∆k) = k, gnlen(M) ≤ n. Note that, ∆n+1 is the1253

syntactic ⊛-algebra for the language L defined by the FO[(∞j)j≤n+1] formula1254

∃∞n+1x a(x). As gnlen(∆n+1) = n+1, it follows that L cannot be defined in1255

FO[(∞j)j≤n].1256

Finally we present our no-finite-basis theorem.1257

47

Theorem 12. There is no finite basis for a block product based characteri-1258

zation for any of these logical systems FO[∞],FO[cut],FO[cut] ∩WMSO.1259

Proof. Fix one of the logics L mentioned in the statement of the theorem.1260

It follows from Theorem 8 and the decidable algebraic characterization (see1261

[10]) of FO[cut] that the syntactic ⊕-algebras of L-definable languages are1262

aperiodic. Now suppose, for contradiction, L admits a finite basis B of1263

aperiodic ⊕-algebras for its block product based characterization. Since B is1264

finite, there exists n ∈ N such that for all ⊕-algebra M in B, gnlen(M) ≤ n.1265

It follows by Lemma 18 that the syntactic ⊕-algebra N of every L-definable1266

language has the property gnlen(N) ≤ n.1267

Now consider the language L defined by the FO[∞] sentence ∃∞n+1x a(x).1268

By Theorem 8, L is L-definable. Hence, the gap-nesting-length of the syn-1269

tactic ⊕-algebra K of L is less than or equal to n. However, K is simply1270

∆n+1 and gnlen(∆n+1) = n+ 1. This leads to a contradiction.1271

9. Conclusion1272

This work provides various equational as well as product-based decom-1273

positional algebraic characterizations of logical formalisms over countable1274

words. Towards this, we have developed a seamless integration of the block1275

product operation into the algebraic framework well suited for the countable1276

setting.1277

In fact, we have obtained algebraic characterizations of FO fragments de-1278

termined by the number of permissible variables. We also generalize Simon’s1279

theorem on piecewise testable languages by establishing a decidable algebraic1280

characterization of the Boolean closure of the existential-fragment of FO over1281

countable words. More importantly, we have enriched FO with new infinitary1282

quantifiers and established hierarchical block-product based characterization1283

of the resulting extension FO[∞]. We also show that FO[∞] properties can1284

be expressed simultaneously in FO[cut] as well as WMSO. We do not know if1285

the converse also holds. If true, it will provide a syntactic means to describe1286

the semantic class FO[cut]∩WMSO. We have also shown that these natural1287

logical systems can not have a block-product based characterization using a1288

finite basis.1289

An interesting future direction is to obtain natural block product decom-1290

positions for several sublogics of MSO studied in [10], in particular that of1291

FO[cut] and WMSO. This will complement the equational characterizations1292

48

presented there and provide the linkages, in the spirit of the fundamental1293

Krohn-Rhodes theorem for finite semigroups, between equational and prod-1294

uct based algebraic characterizations over countable words.1295

References1296

[1] W. Thomas, Languages, automata, and logic, in: G. Rozenberg, A. Salo-1297

maa (Eds.), Handbook of Formal Languages, Volume 3: Beyond Words,1298

Springer, 1997, pp. 389–455. doi:10.1007/978-3-642-59126-6_7.1299

[2] J. Pin, Syntactic semigroups, in: G. Rozenberg, A. Salomaa (Eds.),1300

Handbook of Formal Languages, Volume 1: Word, Language, Grammar,1301

Springer, 1997, pp. 679–746. doi:10.1007/978-3-642-59136-5_10.1302

[3] P. Tesson, D. Thérien, Logic meets algebra: the case of regular lan-1303

guages, Logical Methods in Computer Science 3 (1) (2007). doi:1304

10.2168/LMCS-3(1:4)2007.1305

[4] J.R. Büchi, On a Decision Method in Restricted Second Order Arith-1306

metic, in: Proceedings of the 1960 International Congress of Logic,1307

Methodology and Philosophy of Science, Stanford University Press,1308

1960, pp. 1–12, june.1309

[5] M. O. Rabin, Decidability of second-order theories and automata on1310

infinite trees, Transactions of the American Mathematical Society 1411311

(1969) 1–35.1312

[6] S.Shelah, The monadic theory of order, Ann. of Math. 102 (1975) 379–1313

419.1314

[7] O. Carton, T. Colcombet, G. Puppis, An algebraic approach to MSO-1315

definability on countable linear orderings, The Journal of Symbolic Logic1316

83 (3) (2018) 1147–1189. doi:10.1017/jsl.2018.7.1317

[8] M. P. Schützenberger, On finite monoids having only trivial sub-1318

groups, Information and Control 8 (2) (1965) 190–194. doi:10.1016/1319

S0019-9958(65)90108-7.1320

[9] R. McNaughton, S. A. Papert, Counter-Free Automata (MIT research1321

monograph no. 65), The MIT Press, 1971.1322

49

https://doi.org/10.1007/978-3-642-59126-6_7
https://doi.org/10.1007/978-3-642-59136-5_10
https://doi.org/10.2168/LMCS-3(1:4)2007
https://doi.org/10.2168/LMCS-3(1:4)2007
https://doi.org/10.2168/LMCS-3(1:4)2007
https://doi.org/10.1017/jsl.2018.7
https://doi.org/10.1016/S0019-9958(65)90108-7
https://doi.org/10.1016/S0019-9958(65)90108-7
https://doi.org/10.1016/S0019-9958(65)90108-7

[10] T. Colcombet, A. V. Sreejith, Limited set quantifiers over countable1323

linear orderings, in: M. M. Halldórsson, K. Iwama, N. Kobayashi,1324

B. Speckmann (Eds.), Automata, Languages, and Programming - 42nd1325

International Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015,1326

Proceedings, Part II, Vol. 9135 of Lecture Notes in Computer Science,1327

Springer, 2015, pp. 146–158. doi:10.1007/978-3-662-47666-6_12.1328

[11] A. Manuel, A. V. Sreejith, Two-variable logic over countable linear or-1329

derings, in: P. Faliszewski, A. Muscholl, R. Niedermeier (Eds.), 41st1330

International Symposium on Mathematical Foundations of Computer1331

Science, MFCS 2016, August 22-26, 2016 - Kraków, Poland, Vol. 58 of1332

LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016, pp.1333

66:1–66:13. doi:10.4230/LIPIcs.MFCS.2016.66.1334

[12] D. M. Gabbay, I. Hodkinson, M. Reynolds, Temporal Logic: Math-1335

ematical Foundations and Computational Aspects, Volume 1, Oxford1336

University Press, Oxford, 1994.1337

[13] A. Bès, O. Carton, Algebraic characterization of FO for scattered linear1338

orderings, in: M. Bezem (Ed.), Computer Science Logic, 25th Interna-1339

tional Workshop / 20th Annual Conference of the EACSL, CSL 2011,1340

September 12-15, 2011, Bergen, Norway, Proceedings, Vol. 12 of LIPIcs,1341

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2011, pp. 67–81.1342

doi:10.4230/LIPIcs.CSL.2011.67.1343

[14] K. Krohn, J. Rhodes, Algebraic theory of machines. I. Prime decom-1344

position theorem for finite semigroups and machines, Transactions of1345

the American Mathematical Society 116 (1965) 450–464. doi:10.2307/1346

1994127.1347

[15] H. Straubing, Finite automata, formal logic, and circuit complexity,1348

Birkhaüser Verlag, 1994. doi:10.1007/978-1-4612-0289-9.1349

[16] H. Straubing, D. Thérien, Weakly iterated block products of finite1350

monoids, in: S. Rajsbaum (Ed.), LATIN 2002: Theoretical Informat-1351

ics, 5th Latin American Symposium, Cancun, Mexico, April 3-6, 2002,1352

Proceedings, Vol. 2286 of Lecture Notes in Computer Science, Springer,1353

2002, pp. 91–104. doi:10.1007/3-540-45995-2_13.1354

50

https://doi.org/10.1007/978-3-662-47666-6_12
https://doi.org/10.4230/LIPIcs.MFCS.2016.66
https://doi.org/10.4230/LIPIcs.CSL.2011.67
https://doi.org/10.2307/1994127
https://doi.org/10.2307/1994127
https://doi.org/10.2307/1994127
https://doi.org/10.1007/978-1-4612-0289-9
https://doi.org/10.1007/3-540-45995-2_13

[17] B. Adsul, S. Sarkar, A. V. Sreejith, First-order logic and its infinitary1355

quantifier extensions over countable words, in: E. Bampis, A. Pagourtzis1356

(Eds.), Fundamentals of Computation Theory - 23rd International Sym-1357

posium, FCT 2021, Athens, Greece, September 12-15, 2021, Proceed-1358

ings, Vol. 12867 of Lecture Notes in Computer Science, Springer, 2021,1359

pp. 39–52. doi:10.1007/978-3-030-86593-1_3.1360

[18] B. Adsul, S. Sarkar, A. V. Sreejith, Block products for algebras over1361

countable words and applications to logic, in: 34th Annual ACM/IEEE1362

Symposium on Logic in Computer Science, LICS 2019, Vancouver, BC,1363

Canada, June 24-27, 2019, IEEE, 2019, pp. 1–13. doi:10.1109/LICS.1364

2019.8785669.1365

[19] J. G. Rosenstein, Linear orderings, Academic press, 1982.1366

[20] V. Diekert, P. Gastin, M. Kufleitner, A survey on small fragments1367

of first-order logic over finite words, International Journal of Foun-1368

dations of Computer Science 19 (3) (2008) 513–548. doi:10.1142/1369

S0129054108005802.1370

[21] H. Straubing, P. Weil, Varieties, in: J. Pin (Ed.), Handbook of Au-1371

tomata Theory, European Mathematical Society Publishing House,1372

Zürich, Switzerland, 2021, pp. 569–614. doi:10.4171/Automata-1/16.1373

[22] I. Simon, Piecewise testable events, in: H. Barkhage (Ed.), Automata1374

Theory and Formal Languages, 2nd GI Conference, Kaiserslautern, May1375

20-23, 1975, Vol. 33 of Lecture Notes in Computer Science, Springer,1376

1975, pp. 214–222. doi:10.1007/3-540-07407-4_23.1377

[23] J.-É. Pin, Mathematical foundations of automata theory (December1378

2020).1379

URL https://www.irif.fr/~jep/PDF/MPRI/MPRI.pdf1380

[24] V. Diekert, M. Kufleitner, G. Rosenberger, U. Hertrampf, Discrete Al-1381

gebraic Methods, De Gruyter, Berlin, Boston, 2016. doi:10.1515/1382

9783110413335.1383

51

https://doi.org/10.1007/978-3-030-86593-1_3
https://doi.org/10.1109/LICS.2019.8785669
https://doi.org/10.1109/LICS.2019.8785669
https://doi.org/10.1109/LICS.2019.8785669
https://doi.org/10.1142/S0129054108005802
https://doi.org/10.1142/S0129054108005802
https://doi.org/10.1142/S0129054108005802
https://doi.org/10.4171/Automata-1/16
https://doi.org/10.1007/3-540-07407-4_23
https://www.irif.fr/~jep/PDF/MPRI/MPRI.pdf
https://www.irif.fr/~jep/PDF/MPRI/MPRI.pdf
https://doi.org/10.1515/9783110413335
https://doi.org/10.1515/9783110413335
https://doi.org/10.1515/9783110413335

	Introduction
	Preliminaries
	Small Fragments of FO
	FO with single variable
	Boolean closure of existential FO

	Algebraic Products
	Actions
	Semidirect product
	Block Product
	Block Product Principle

	Block Product Closures and FO2 Logic
	Iterated and Weakly Iterated Block Product
	FO with two variables

	First Order Logic with Infinitary Quantifiers - FO[]
	Product Decompositions for FO[]
	FO[] with single variable
	Block Product Decompositions for FO[]

	No Finite Block Product Basis Results
	Conclusion

