
 INDIAN INSTITUTE OF TECHNOLOGY GOA

 NSM Nodal Center for Training in HPC and AI

Tutorial: MPI "MATRIX MULTIPLICATION"

Authors:

1. POBBATI KOUSHIKI SAI MEGHANA, Project Associate

2. Prof. SHARAD SINHA

Copyright © IIT Goa 2024

CONTENTS:

➢ Objective

➢ Program Explanation, Program Code and Code explanation

➢ Compilation and Execution on Local machine

➢ Steps to Run the Program on the Param Vidya HPC Cluster

➢ Experimentation, Plotting and Observations of execution time

a) Keeping the matrix size constant, plotting the no. of processors vs time

b) Keeping the no. of processors constant, plotting the matrix size vs time

➢ Experimentation, Plotting and Observations of calculation time

a) Keeping the matrix size constant, plotting the no. of processors vs time

b) Keeping the no. of processors constant, plotting the matrix size vs time

MPI "Matrix Multiplication" Program on Param Vidya HPC

Objective:

This tutorial will show you how to create, compile, and run MPI "Matrix Multiplication"

programs on the Param Vidya HPC cluster. The goal is to compute the multiplication of

two square matrices using MPI (Message Passing Interface) on HPC, and calculate the

execution time of the program and understand the power of parallel computing. We

write program for matrix multiplication using MPI_Send and MPI_Recv

MPI “Matrix multiplication” using MPI_Send and MPI_Recv:

● Program Explanation:

 The program utilizes MPI_Send and MPI_Recv to distribute the workload of

 multiplying two matrices to multiple processes. These processes are of two types

 namely the root process and the slave processes. The root process distributes

 the input matrices and slave processes perform the multiplication of the partial

matrices assigned to them.The results of all the slave processes are then

 collected by the root process and the root processes displays the output.

● Matrix multiplication code using MPI_Send and MPI_Recv:

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

#include "mpi.h"

#define OUTPUT_FILE "timing_data.txt"

MPI_Status status;

int main(int argc, char **argv)

{

 int rank, num_procs; //process id, number of processes

 int num_slaves; //number of processes excluding root process

 int source, dest; //message passing source and destination

 int num_rows, offset; //num of rows given to each process, starting row index

 double start_time1, end_time1, t1; //t1 : calculation time of the root

process

 double start_time2, end_time2, t2; //t2 : calculation time of the each

process

 double start_time, end_time, t; //t : execution time of the program

 int N = atoi(argv[1]); //matrix size passed as an argument in command line

 MPI_Init(&argc, &argv);

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 MPI_Comm_size(MPI_COMM_WORLD, &num_procs);

 double tarr [num_procs]; //array of calculation times of all processes

 int idx = 0;

 // Ensure there are enough processors

 if (rank == 0 && num_procs < 2) {

 fprintf(stderr, "At least 2 processors are required\n");

 MPI_Abort(MPI_COMM_WORLD, 1);

 }

 num_slaves = num_procs - 1;

 // Allocate matrices dynamically

 int (*A)[N] = malloc(N * N * sizeof(int));

 int (*B)[N] = malloc(N * N * sizeof(int));

 int (*C)[N] = malloc(N * N * sizeof(int)); //output matrix C = A X B

 // Root process

 if (rank == 0)

 {

 srand(time(NULL)); //to get different inputs on different runs

 // Fill the input matrix A

 for (int i = 0; i < N; i++)

 {

 for (int j = 0; j < N; j++)

 {

 A[i][j] = 1 + rand() % 9;

 }

 }

 // Fill the input matrix B

 for (int i = 0; i < N; i++)

 {

 for (int j = 0; j < N; j++)

 {

 B[i][j] = 1 + rand() % 9;

 }

 }

 // Print the input matrix A

 printf("\nMatrix A\n\n");

 for (int i = 0; i < N; i++)

 {

 for (int j = 0; j < N; j++)

 {

 printf("%d ", A[i][j]); //comment this statement to save screen space

 }

 printf("\n");

 }

 // Print the input matrix B

 printf("\nMatrix B\n\n");

 for (int i = 0; i < N; i++)

 {

 for (int j = 0; j < N; j++)

 {

 printf("%d ", B[i][j]); //comment this statement to save screen space

 }

 printf("\n");

 }

 start_time = MPI_Wtime();

 // Calculate the total number of rows each process should receive

 num_rows = N / num_procs; //each process gets an equal share of total rows

 offset = 0; //distribution starts from row 0

 // Allotting calculation tasks to slaves

 printf("\n");

 for (dest = 1; dest <= num_slaves; dest++)

 {

 MPI_Send(&offset, 1, MPI_INT, dest, 1, MPI_COMM_WORLD);

 MPI_Send(&num_rows, 1, MPI_INT, dest, 1, MPI_COMM_WORLD);

 MPI_Send(&A[offset][0], num_rows * N, MPI_INT, dest, 1, MPI_COMM_WORLD);

 printf("Rows from %d to %d are allotted to process %d\n", offset,

offset+num_rows-1,

 dest);

 MPI_Send(&B[0][0], N * N, MPI_INT, dest, 1, MPI_COMM_WORLD);

 offset += num_rows;

 }

 printf("Rows from %d to %d are allotted to process 0.\n", offset,

offset+num_rows-1);

 // Receiving task outputs

 printf("\n");

 for (int i = 1; i <= num_slaves; i++)

 {

 source = i;

 MPI_Recv(&offset, 1, MPI_INT, source, 2, MPI_COMM_WORLD, &status);

 MPI_Recv(&num_rows, 1, MPI_INT, source, 2, MPI_COMM_WORLD, &status);

 MPI_Recv(&C[offset][0], num_rows * N, MPI_INT, source, 2, MPI_COMM_WORLD,

&status);

 MPI_Recv(&t2, 1, MPI_DOUBLE, source, 2, MPI_COMM_WORLD, &status);

 tarr[idx] = t2;

 idx++;

 printf("Process %d sent task outputs %d to %d\n", source, C[offset][0],

 C[offset][num_rows*N - 1]);

 }

 //calculating its own part of output

 start_time1 = MPI_Wtime();

 for (int k = 0; k < N; k++)

 {

 for(int i=offset+1; i<N;i++)

 {

 C[i][k] = 0;

 for (int j = 0; j < N; j++)

 {

 C[i][k] += A[i][j] * B[j][k];

 }

 }

 }

 end_time1 = MPI_Wtime();

 t1 = end_time1 - start_time1;

 tarr[idx] = t1;

 //finding the max of the calculation times

 double max = tarr[0];

 for(int z = 1; z < num_procs; z++)

 {

 if(tarr[z] >= max) max = tarr[z];

 }

 end_time = MPI_Wtime();

 t = end_time - start_time;

 //Printing final output

 printf("\nResult Matrix C = Matrix A * Matrix B:\n\n");

 for (int i = 0; i < N; i++)

 {

 for (int j = 0; j < N; j++)

 printf("%d\t", C[i][j]);

 printf("\n");

 }

 printf("\n");

 //Copy the timing data into a file

 FILE *fp = fopen(OUTPUT_FILE, "a");

 if(fp == NULL)

 {

 fprintf(stderr, "Failed to open file for writing\n");

 MPI_Abort(MPI_COMM_WORLD, 1);

 }

 fprintf(fp, "np = %d, n = %d, et = %f, ct = %f\n", num_procs, N, t,

max);

 fclose(fp);

 free(A);

 free(B);

 free(C);

 }

 // Slave processes

 else

 {

 // Receiving tasks from master

 source = 0;

 MPI_Recv(&offset, 1, MPI_INT, source, 1, MPI_COMM_WORLD, &status);

 MPI_Recv(&num_rows, 1, MPI_INT, source, 1, MPI_COMM_WORLD, &status);

 MPI_Recv(&A[0][0], num_rows * N, MPI_INT, source, 1, MPI_COMM_WORLD,

&status);

 MPI_Recv(&B[0][0], N * N, MPI_INT, source, 1, MPI_COMM_WORLD, &status);

 start_time2 = MPI_Wtime();

 // Calculating task outputs

 for (int k = 0; k < N; k++)

 {

 for (int i = 0; i < num_rows; i++)

 {

 C[offset + i][k] = 0;

 for (int j = 0; j < N; j++)

 {

 C[offset + i][k] += A[i][j] * B[j][k];

 }

 }

 }

 end_time2 = MPI_Wtime();

 t2 = end_time2 - start_time2;

 // Sending task outputs to root process

 MPI_Send(&offset, 1, MPI_INT, 0, 2, MPI_COMM_WORLD);

 MPI_Send(&num_rows, 1, MPI_INT, 0, 2, MPI_COMM_WORLD);

 MPI_Send(&C[offset][0], num_rows * N, MPI_INT, 0, 2, MPI_COMM_WORLD);

 //sending calculation time of each process to the root process.

 MPI_Send(&t2, 1, MPI_DOUBLE, 0, 2, MPI_COMM_WORLD);

 }

 MPI_Finalize();

 return 0;

}

● Code Explanation:

1. Initialization:

● MPI_Init() is the function used to initialize the MPI environment.
● MPI_Comm_rank is the function that determines the rank of the calling

process in the MPI_COMM_WORLD.

● MPI_Comm_size is the function that determines the number of processes

in the MPI_COMM_WORLD.

● MPI_COMM_WORLD is a universe for a group of communicating

processes.

2. Memory allocation:

● Space for input matrices A and B and output matrix C is dynamically

allocated.

3. Tasks of root process :

● Filling and printing the input matrices A and B.

● Finding the number of rows of A that each slave process should get.

● MPI_Send() is used to send the slave processes the address of chunk of

matrix A and address of matrix B.

● MPI_Recv() is used to receive the partial matrix multiplication results.

● Performing its own part of matrix multiplication.

● Printing out the final output and execution time.

4. Tasks of slave process :

● Receive the allotted chunks of matrix A using MPI_Recv() function.

● Performing matrix multiplication on the received partial A and matrix B.

● Sending the results to the root process using MPI_Send().

5. Memory deallocation :

● Deallocating the memory allocated for matrices using free() function in C.
6. MPI_Finalize() :

● MPI_Finalize() is the function used to terminate the MPI communication.

Compilation and Execution on Local Machine:

First you can compile and run the program on your local machine to observe how the

code works. To compile and run the program on your local machine, follow these steps:

1. Install OpenMPI:

● Ensure that OpenMPI is installed on your local machine.

2. Compile the Program:

●

mpicc -o matMul matrix_multiplication.c

3. Run the Program:

●

mpirun -np <number_of_processes> matMul <matrix_size>

● If you exceed the processor limit on your local machine, then the terminal

might display a message similar to this:

$ mpirun -np 10 matMul
--
There are not enough slots available in the system to satisfy the 9
slots that were requested by the application:

 matMul

Either request fewer procs for your application, or make more slots
available for use.

Steps to Run the Program on the Param Vidya HPC Cluster:

To run the MPI program on the Param Vidya HPC cluster, follow these steps:

1. Log in to the HPC Machine:

● Linux systems provide a built-in SSH client, so there is no need to install

any additional package. Use SSH to log in to the HPC cluster. You'll need

the appropriate credentials and network access.

ssh username@hpc_address

● For example, to connect to the PARAM Vidya Login Node, we use the

above command.

ssh username@paramvidya.iitgoa.ac.in -p <port number>

2. Transfer matrix_multiplication.c to the Cluster:

● Use scp to transfer the source code file from your local machine to the

cluster:

scp –P <port number> -r /path/to/directory/matrix_multiplication.c <your

username>@paramvidya.iitgoa.ac.in:<path to directory on HPC where

to save the data>

● Otherwise, you can also create a matrix_multiplication.c file after logging

in to the HPC machine using commands like nano, vim etc.

3. Load openmpi module:

● To list the modules available on the hpc machine, use the below

command:

module avail

● Identify the correct name of the openmpi module from the list (in my case

it is openmpi3/3.1.4). Then, load that module with the command:

module load openmpi3/3.1.4

This will load the openmpi module on the HPC machine.

4. Compile the Program:

●

mpicc -o mpi matrix_multiplication.c

5. Run the Program:

●

mpirun -np <number_of_processes> matMul <matrix_size>

● For example, to run with 16 processes, we would use the below

command.

mpirun -np 16 matMul 128

● Since the limit of the number of processors in our hpc machine is 48, we

can run the program up to across 48 processors.

Experimentation, Plotting and Observations of execution time :

a. Keeping the size of the matrix(n), plotting number of processors(np) vs time(t)

● Case 1 : matrix size = 32

● Case 2 : matrix size = 256

● Case 3 : matrix size = 1024

● Case 4 : matrix size = 2048

● Case 5 : matrix size = 4096

● Case 6 : matrix size = 8192

Observation : When the number of processes increases, the execution time in parallel

computation must decrease. But in some cases, like case 1,2 and 3, the trend was not

as expected. This is because of the communication delay between the processes,

which is an overhead.

b. Keeping the number of processes(np) constant and plotting matrix size(n) vs

time(t) :

● Case 1 : number of processes = 4

● Case 2 : number of processes = 8

● Case 3 : number of processes = 16

● Case 4 : number of processes = 32

● Case 5 : number of processes = 48

Observation : As the size of the matrix increases, the execution time increases in all

cases.

Experimentation, Plotting and Observations of calculation time :

a. Keeping the matrix size(n) constant and plotting number of processes(np)

vs calculation time(t) : We have observed in the plots of np vs execution time

that the communication delay was an overhead and the expected trend was not

seen. Now let us plot only the calculation time ignoring the communication

delays.

● Case 1 : matrix size = 32

● Case 2 : matrix size = 256

● Case 3 : matrix size = 1024

● Case 4 : matrix size = 2048

● Case 5 : matrix size = 4096

● Case 6 : matrix size = 8192

Observations : As expected, when the number of processes increased, the calculation

time decreased in all the cases.

b. Keeping the number of processes (np) constant and plotting the matrix size

(n) vs calculation time(t) :

