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MPI "Matrix Addition" Program on Param Vidya HPC 

 

Objective: 

This tutorial will show you how to create, compile, and run a simple MPI "Matrix 

Addition" program on the Param Vidya HPC cluster. The goal is to compute the sum of 

two square matrices using MPI (Message Passing Interface), and calculate the 

execution time of the program. 

 

Program Explanation: 

The program utilizes MPI to distribute the workload of summing two square matrices 

across multiple processes. Each process computes a partial sum of the row elements of 

the two matrices assigned to it. The partial sums are then collected by the master 

process to compute the final sum. 

 

‘matrix_addition.c’ code: 

 

#include <mpi.h> 
#include <stdio.h> 
#include <stdlib.h> 
#include <time.h> 
 
// Function to generate a random matrix with 'rows' x 'cols' elements 
void generateRandomMatrix(int* matrix, int rows, int cols) { 
    for (int i = 0; i < rows; i++) { 
        for (int j = 0; j < cols; j++) { 
            matrix[i * cols + j] = rand() % 100; // The matrix will be filled with random 
numbers (0-99) 
        } 
    } 
} 
 
// Function to write a matrix to a file 
void writeMatrix(char* filename, int* matrix, int rows, int cols) { 
    FILE* file = fopen(filename, "w"); 
    if (file == NULL) { 
        printf("Error opening file %s\n", filename); 
        MPI_Abort(MPI_COMM_WORLD, 1); 
    } 
    fprintf(file, "%d %d\n", rows, cols); 
    for (int i = 0; i < rows; i++) { 
        for (int j = 0; j < cols; j++) { 



            fprintf(file, "%d ", matrix[i * cols + j]); 
        } 
        fprintf(file, "\n"); 
    } 
    fclose(file); 
} 
 
// Function to log matrix size and execution time to 'execution_times.txt' 
void logExecutionTime(int size, double execution_time) { 
    FILE* file = fopen("matAdd_exec_times_const_proc.txt", "a"); 
    if (file == NULL) { 
        printf("Error opening file matAdd_exec_times_const_proc.txt\n"); 
        exit(1); 
    } 
    fprintf(file, "%d %f\n", size, execution_time);  // Matrix size and time 
    fclose(file); 
} 
 
int main(int argc, char** argv) { 
    int rank, size, rows, cols; 
    int *matrixA = NULL, *matrixB = NULL, *matrixC = NULL; 
    double start_time, end_time, execution_time; 
 
    MPI_Init(&argc, &argv); 
    MPI_Comm_rank(MPI_COMM_WORLD, &rank); 
    MPI_Comm_size(MPI_COMM_WORLD, &size); 
 
    if (rank == 0) { // Only process 0 (root process) executes this 
        printf("Enter the number of rows and columns for the matrices: \n"); 
        scanf("%d %d", &rows, &cols); 
        start_time = MPI_Wtime();  // Start timer 
 
        printf("Root process (Process 0) is generating random matrices...\n"); 
        srand(time(NULL)); // To seed the random number generator with the current 
time 
 
        matrixA = (int*)malloc(rows * cols * sizeof(int)); 
        matrixB = (int*)malloc(rows * cols * sizeof(int)); 
        generateRandomMatrix(matrixA, rows, cols); 
        generateRandomMatrix(matrixB, rows, cols); 
 
        writeMatrix("matA.txt", matrixA, rows, cols); 
        writeMatrix("matB.txt", matrixB, rows, cols); 
 
        printf("Root process (Process 0) has written the matrices to matA.txt and 
matB.txt.\n"); 



    } 
 
    // Broadcast matrix dimensions (rows and cols) from root process to all processes 
    MPI_Bcast(&rows, 1, MPI_INT, 0, MPI_COMM_WORLD); 
    MPI_Bcast(&cols, 1, MPI_INT, 0, MPI_COMM_WORLD); 
 
    int active_processes = (size < rows) ? size : rows; 
    MPI_Comm active_comm; 
 
    // Split communicator: active processes form one group, idle ones form another 
    MPI_Comm_split(MPI_COMM_WORLD, rank < active_processes, rank, 
&active_comm); 
 
    if (rank < active_processes) { 
        int local_rows = rows / active_processes; 
        int extra_rows = rows % active_processes; 
        int start_row, end_row; 
 
        if (rank < extra_rows) { 
            // First 'extra_rows' processes get an extra row 
            start_row = rank * (local_rows + 1); 
            end_row = start_row + local_rows; 
        } else { 
            start_row = rank * local_rows + extra_rows; 
            end_row = start_row + local_rows - 1; 
        } 
 
        int local_size = (end_row - start_row + 1) * cols; 
        int *localA = (int*)malloc(local_size * sizeof(int)); 
        int *localB = (int*)malloc(local_size * sizeof(int)); 
        int *localC = (int*)malloc(local_size * sizeof(int)); 
 
        if (rank != 0) { 
            matrixA = (int*)malloc(rows * cols * sizeof(int)); 
            matrixB = (int*)malloc(rows * cols * sizeof(int)); 
        } 
        matrixC = (int*)malloc(rows * cols * sizeof(int)); 
 
        int *sendcounts = (int*)malloc(active_processes * sizeof(int)); 
        int *displs = (int*)malloc(active_processes * sizeof(int)); 
 
        for (int i = 0; i < active_processes; i++) { 
            int process_local_rows = (i < extra_rows) ? local_rows + 1 : local_rows; 
            sendcounts[i] = process_local_rows * cols; 
            displs[i] = (i < extra_rows) ? i * (local_rows + 1) * cols : (i * local_rows + 
extra_rows) * cols; 



        } 
 
        // Scatter matrix A and B from the root process to all processes 
        MPI_Scatterv(matrixA, sendcounts, displs, MPI_INT, localA, local_size, 
MPI_INT, 0, active_comm); 
        MPI_Scatterv(matrixB, sendcounts, displs, MPI_INT, localB, local_size, 
MPI_INT, 0, active_comm); 
 
        printf("Process %d is performing matrix addition for rows %d to %d of matA and 
matB...\n", 
               rank, start_row, end_row); 
 
        // Perform matrix addition on the local chunks 
        for (int i = 0; i < local_size; i++) { 
            localC[i] = localA[i] + localB[i]; 
        } 
 
        for (int row = start_row; row <= end_row; row++) { 
            int local_row_index = row - start_row; 
             
            printf("Process %d, row %d of matAdd is: ", rank, row); 
            for (int i = 0; i < cols; i++) { 
                printf("%d ", localC[local_row_index * cols + i]); 
            } 
            printf("\n"); 
        } 
 
        // Gather the results from all processes into matrix C (resultant matrix) 
        MPI_Gatherv(localC, local_size, MPI_INT, matrixC, sendcounts, displs, 
MPI_INT, 0, active_comm); 
 
        free(localA); 
        free(localB); 
        free(localC); 
        free(sendcounts); 
        free(displs); 
    } else { 
        printf("Process %d is idle (no rows assigned).\n", rank); 
    } 
 
    MPI_Barrier(MPI_COMM_WORLD);  // Ensure all processes finish before stopping 
timer 
    end_time = MPI_Wtime();  // Stop timer 
    execution_time = end_time - start_time; 
 
    if (rank == 0) { 



        printf("Root process (Process 0) is gathering the results and writing to 
matAdd.txt...\n"); 
        writeMatrix("matAdd.txt", matrixC, rows, cols); 
        printf("Execution time: %f seconds\n", execution_time); 
         
        // Log the size of the matrix and execution time to the file 
        logExecutionTime(rows, execution_time); 
    } 
 
    if (matrixA) free(matrixA); 
    if (matrixB) free(matrixB); 
    if (matrixC) free(matrixC); 
 
    MPI_Comm_free(&active_comm); 
    MPI_Finalize(); 
    return 0; 
} 

 

 

 

Code Explanation: 

1. Initialization: 

● MPI_Init(&argc, &argv): This initializes the MPI environment. It must be 

the first MPI function called in any MPI program. 

 

2. Process Identification: 

● MPI_Comm_rank(MPI_COMM_WORLD, &rank): Retrieves the rank (ID) 

of the calling process. Each process in MPI is identified by its rank, which 

ranges from 0 to size-1. The root process (rank 0) typically handles I/O 

operations, while other processes perform calculations. 

● MPI_Comm_size(MPI_COMM_WORLD, &size): Gets the total number of 

processes in the communicator MPI_COMM_WORLD (default 

communicator containing all processes).  

 

3. User Input: 

● (Root Process rank == 0): The root process (rank 0) prompts the user to 

input the number of rows and columns for the matrices. This input is then 

used to generate random matrices matrixA and matrixB of size rows x 

cols. 

 

4. Random Matrix Generation:  



● generateRandomMatrix(): Two matrices, matrixA and matrixB, are filled 

with random values between 0 and 99 using this function. 

 

5. Timer: 

● MPI_Wtime() provides the elapsed (wall-clock) time. Here, the start_time 

and end_time are recorded around the entire computation, and the 

difference gives the total execution time of the program. 

 

6. Broadcast Matrix Size: 

● MPI_Bcast(): The root process broadcasts the matrix dimensions (rows 

and cols) to all other processes using MPI_Bcast(). This ensures that 

every process knows the dimensions of the matrices. 

 

7. Dividing Rows Among Processes: 

● The total rows are divided among the active processes. If there is a 

remainder (extra_rows), the first few processes will handle one extra row. 

 

8. Scatter Matrices to Processes: 

● MPI_Scatterv(): The matrices matrixA and matrixB are divided and 

distributed across all active processes using MPI_Scatterv, with each 

process receiving a chunk of rows. This step allows parallel computation 

of matrix addition, where each process works on its assigned chunk. 

 

9. Local Matrix Addition (In Each Process): 

● After receiving their respective chunks, each process performs matrix 

addition element-wise. The code loops through each local element of 

matrixA and matrixB, adds them, and stores the result in localC. 

 

10. Row Calculation: 

● Each process is responsible for a specific set of rows. The start_row and 

end_row variables are used to calculate the row indices for each process 

based on its rank. These indices determine which portion of the matrices 

each process operates on.  

 

11. Gathering Results at Root: 

● MPI_Gatherv(): The local portions of localC are gathered back at the root 

process (rank 0) using MPI_Gatherv, forming the complete result matrix 

matrixC. 

 

12. Final Output: 



● After gathering all portions, the root process writes the final result matrix 

matrixC to matAdd.txt. It also prints the total execution time for the 

computation. 

● Also each process prints its assigned rows of the result matrix to the 

terminal. 

13. Memory Allocation and Deallocation:  

● Each process dynamically allocates memory for its local portion of the 

matrices (localA, localB, localC). After completing their work, the memory 

is freed to avoid memory leaks. 

 

14. Finalization: 

● MPI_Finalize(): This function cleans up the MPI environment, ensuring 

that all processes exit gracefully. It is the last MPI function to be called. 

 

 

Compilation and Execution on Local Machine: 

 

First you can compile and run the program on your local machine to observe how the 

code works. To compile and run the program on your local machine, follow these steps: 

 

1. Install OpenMPI: 

● Ensure that OpenMPI is installed on your local machine. 

 

2. Compile the Program: 

●  

mpicc -o mpi matrix_addition.c 

 

 

3. Run the Program: 

●  

mpirun -np <number_of_processes> mpi 

 

● For example, to run with 6 processes, we would use the below command. 

 

mpirun -np 6 mpi 

 



● Then the user will be prompted to enter the number of rows and columns 

of the input matrices, say the user enters 10 10. Then the output would 

look like this on the terminal: 

 

$ mpirun -np 6 mpi 
Enter the number of rows and columns for the matrices:  
10 10 
Root process (Process 0) is generating random matrices... 
Root process (Process 0) has written the matrices to matA.txt and 
matB.txt. 
Process 4 is performing matrix addition for rows 8 to 8 of matA and 
matB... 
Process 4, row 8 of matAdd is: 102 183 61 83 95 147 144 53 111 147  
Process 5 is performing matrix addition for rows 9 to 9 of matA and 
matB... 
Process 5, row 9 of matAdd is: 156 12 44 127 145 102 111 127 65 147  
Process 1 is performing matrix addition for rows 2 to 3 of matA and 
matB... 
Process 1, row 2 of matAdd is: 105 68 137 77 124 46 26 90 89 89  
Process 1, row 3 of matAdd is: 146 18 123 108 109 149 101 148 104 
109  
Process 2 is performing matrix addition for rows 4 to 5 of matA and 
matB... 
Process 2, row 4 of matAdd is: 97 158 144 90 97 139 163 57 93 59  
Process 2, row 5 of matAdd is: 69 51 80 160 133 157 106 160 99 99  
Process 0 is performing matrix addition for rows 0 to 1 of matA and 
matB... 
Process 0, row 0 of matAdd is: 76 34 109 191 121 92 86 103 156 144  
Process 0, row 1 of matAdd is: 102 33 193 139 43 68 159 101 96 108  
Root process (Process 0) is gathering the results and writing to 
matAdd.txt... 
Process 3 is performing matrix addition for rows 6 to 7 of matA and 
matB... 
Process 3, row 6 of matAdd is: 101 97 170 129 57 131 82 110 132 38  
Process 3, row 7 of matAdd is: 21 129 49 169 123 51 60 138 112 105  
Execution time: 0.008520 seconds 

 

● Also the randomly generated input matrices (matA and matB) and output 

matrix (matAdd) in the text files would be like this: 

 

matA.txt 

10 10 
38 29 46 92 46 49 59 20 99 84  



45 7 94 76 36 44 84 28 71 50  
64 53 79 71 25 38 16 13 13 46  
95 4 75 41 96 74 91 55 94 90  
92 91 98 86 67 86 83 52 14 54  
54 31 60 86 54 85 24 71 50 89  
17 45 93 45 38 89 71 29 97 17  
20 89 9 70 27 28 56 62 32 22  
69 87 5 29 73 60 66 49 83 68  
90 0 13 84 97 51 25 68 33 74  

 

matB.txt 

10 10 
38 5 63 99 75 43 27 83 57 60  
57 26 99 63 7 24 75 73 25 58  
41 15 58 6 99 8 10 77 76 43  
51 14 48 67 13 75 10 93 10 19  
5 67 46 4 30 53 80 5 79 5  
15 20 20 74 79 72 82 89 49 10  
84 52 77 84 19 42 11 81 35 21  
1 40 40 99 96 23 4 76 80 83  
33 96 56 54 22 87 78 4 28 79  
66 12 31 43 48 51 86 59 32 73  

 

matAdd.txt 

10 10 
76 34 109 191 121 92 86 103 156 144  
102 33 193 139 43 68 159 101 96 108  
105 68 137 77 124 46 26 90 89 89  
146 18 123 108 109 149 101 148 104 109  
97 158 144 90 97 139 163 57 93 59  
69 51 80 160 133 157 106 160 99 99  
101 97 170 129 57 131 82 110 132 38  
21 129 49 169 123 51 60 138 112 105  
102 183 61 83 95 147 144 53 111 147  
156 12 44 127 145 102 111 127 65 147  

 

● If you exceed the processor limit on your local machine, then the terminal 

might display a message similar to this: 

 

$ mpirun -np 9 mpi 
-------------------------------------------------------------------------- 
There are not enough slots available in the system to satisfy the 9 



slots that were requested by the application: 
 
  mpi 
 
Either request fewer procs for your application, or make more slots 
available for use. 
 

 

 

 

Steps to Run the Program on the Param Vidya HPC Cluster: 

 

To run the MPI program on the Param Vidya HPC cluster, follow these steps: 

 

1. Log in to the HPC Machine: 

● Linux systems provide a built-in SSH client, so there is no need to install 

any additional package. Use SSH to log in to the HPC cluster. You'll need 

the appropriate credentials and network access.  

 

ssh username@hpc_address 

 

● For example, to connect to the PARAM Vidya Login Node, we use the 

above command. 

 

ssh username@paramvidya.iitgoa.ac.in -p <port number> 

 

2. Transfer sum_of_nums.c to the Cluster: 

● Use scp to transfer the source code file from your local machine to the 

cluster: 

 

scp –P <port number> -r /path/to/directory/matrix_addition.c <your 

username>@paramvidya.iitgoa.ac.in:<path to directory on HPC where 

to save the data> 

 

● Otherwise, you can also create a matrix_addition.c file after logging in to 

the HPC machine using commands like nano, vim etc. 

 

3. Load openmpi module: 



● To list the modules available on the hpc machine, use the below 

command: 

 

module avail 

 

● Identify the correct name of the openmpi module from the list (in my case 

it is openmpi3/3.1.4). Then, load that module with the command: 

 

module load openmpi3/3.1.4 

 

This will load the openmpi module on the HPC machine. 

 

4. Compile the Program: 

●  

mpicc -o mpi matrix_addition.c 

 

 

5. Run the Program: 

●  

mpirun -np <number_of_processes> mpi 

 

● For example, to run with 16 processes, we would use the below 

command. 

 

mpirun -np 16 mpi 

 

● Then the user will be prompted to enter the number of rows and columns 

of the input matrices, say the user enters 30 30. Then the output would 

look like this: 

 

Enter the number of rows and columns for the matrices:  
30 30 
Root process (Process 0) is generating random matrices... 
Root process (Process 0) has written the matrices to matA.txt and 
matB.txt. 
Process 1 is performing matrix addition for rows 2 to 3 of matA and 
matB... 



Process 1, row 2 of matAdd is: 138 88 137 26 112 136 111 34 176 147 
91 107 110 172 105 117 71 97 110 128 150 141 135 108 33 91 14 175 
146 125  
Process 1, row 3 of matAdd is: 132 85 17 121 116 82 58 27 68 138 79 
165 146 90 41 56 59 112 105 75 140 108 68 80 69 106 71 84 81 118  
Process 2 is performing matrix addition for rows 4 to 5 of matA and 
matB... 
Process 2, row 4 of matAdd is: 114 114 108 84 140 124 170 98 3 44 90 
134 161 88 77 102 96 89 67 53 116 111 114 88 92 136 94 68 124 77  
Process 2, row 5 of matAdd is: 91 42 95 99 131 135 75 102 139 130 98 
129 117 111 21 95 114 118 88 85 75 157 96 94 97 93 82 93 162 59  
Process 3 is performing matrix addition for rows 6 to 7 of matA and 
matB... 
Process 3, row 6 of matAdd is: 122 105 53 69 104 85 109 131 92 100 
113 94 29 82 106 154 181 172 176 74 61 53 83 57 99 81 103 86 74 117  
Process 3, row 7 of matAdd is: 145 48 174 50 69 30 40 131 65 36 31 83 
130 165 117 88 72 104 112 149 78 125 54 114 88 106 147 91 92 74  
Process 4 is performing matrix addition for rows 8 to 9 of matA and 
matB... 
Process 4, row 8 of matAdd is: 161 41 74 87 143 48 70 88 32 135 124 
167 70 8 85 140 148 58 148 14 59 179 91 166 45 79 176 144 123 20  
Process 4, row 9 of matAdd is: 122 136 61 149 123 108 149 145 97 133 
85 26 153 107 86 191 152 135 101 100 53 64 83 97 82 80 129 110 77 
56  
Process 5 is performing matrix addition for rows 10 to 11 of matA and 
matB... 
Process 5, row 10 of matAdd is: 130 51 193 95 52 69 56 154 67 106 39 
104 84 97 17 123 40 169 62 141 174 116 110 158 165 92 143 146 103 
21  
Process 5, row 11 of matAdd is: 104 137 76 49 85 130 170 93 136 90 
51 128 99 87 126 116 110 66 138 173 112 116 93 122 78 111 118 122 
109 73  
Process 6 is performing matrix addition for rows 12 to 13 of matA and 
matB... 
Process 6, row 12 of matAdd is: 147 65 63 124 67 100 6 90 45 94 184 
49 23 84 88 53 52 104 171 94 81 135 111 27 109 90 90 80 64 99  
Process 6, row 13 of matAdd is: 105 112 70 72 137 41 124 195 131 122 
142 69 123 118 157 64 171 162 120 95 57 53 83 72 132 97 115 74 129 
80  
Process 7 is performing matrix addition for rows 14 to 15 of matA and 
matB... 
Process 7, row 14 of matAdd is: 75 140 197 149 112 86 90 190 133 126 
64 175 47 88 45 104 56 69 171 77 117 81 130 152 105 116 153 121 90 
84  
Process 7, row 15 of matAdd is: 106 69 176 155 118 40 41 13 82 26 92 
51 154 139 91 152 148 148 74 72 77 43 105 59 47 62 127 101 88 71  



Process 8 is performing matrix addition for rows 16 to 17 of matA and 
matB... 
Process 8, row 16 of matAdd is: 89 94 92 117 101 116 110 46 81 97 72 
73 148 131 117 92 84 65 92 110 89 121 105 98 133 56 113 113 161 
102  
Process 8, row 17 of matAdd is: 136 151 100 81 120 154 49 83 152 131 
85 25 108 85 109 125 30 97 142 122 159 136 44 68 34 78 176 100 95 
138  
Process 9 is performing matrix addition for rows 18 to 19 of matA and 
matB... 
Process 9, row 18 of matAdd is: 54 132 89 106 165 115 112 67 50 117 
150 87 47 162 73 108 88 156 105 82 130 68 71 127 136 158 109 112 
110 5  
Process 9, row 19 of matAdd is: 50 117 89 45 128 106 112 45 125 114 
62 179 102 61 142 127 69 82 87 26 116 170 146 40 50 82 151 11 47 
165  
Process 10 is performing matrix addition for rows 20 to 21 of matA and 
matB... 
Process 10, row 20 of matAdd is: 68 102 35 161 151 164 119 115 113 
97 129 76 128 135 90 122 167 12 156 154 91 178 125 90 18 79 125 73 
142 124  
Process 10, row 21 of matAdd is: 139 15 31 75 176 82 143 97 98 156 
146 132 136 127 120 127 54 40 192 163 46 87 141 76 177 112 107 55 
85 103  
Process 11 is performing matrix addition for rows 22 to 23 of matA and 
matB... 
Process 11, row 22 of matAdd is: 132 124 118 115 103 147 51 150 96 
53 107 147 185 96 126 58 127 132 150 171 96 49 111 37 130 93 101 
89 152 87  
Process 11, row 23 of matAdd is: 144 85 116 67 105 124 115 156 75 63 
9 86 62 100 135 140 62 115 74 65 91 70 166 155 112 100 100 166 190 
53  
Process 12 is performing matrix addition for rows 24 to 25 of matA and 
matB... 
Process 12, row 24 of matAdd is: 106 87 91 26 55 148 2 122 157 130 
37 70 17 52 122 156 44 185 124 70 154 116 145 125 123 58 125 175 
176 119  
Process 12, row 25 of matAdd is: 80 86 59 123 64 166 124 68 140 33 
150 81 56 119 85 131 129 83 69 105 53 75 73 51 100 96 61 78 123 90  
Process 13 is performing matrix addition for rows 26 to 27 of matA and 
matB... 
Process 13, row 26 of matAdd is: 49 157 128 161 132 145 179 61 17 72 
94 119 106 103 44 96 87 73 79 156 130 137 35 104 40 136 104 54 118 
80  
Process 13, row 27 of matAdd is: 96 167 137 176 129 174 174 61 35 91 
86 83 64 96 90 160 92 77 85 76 37 115 66 73 171 58 113 76 65 131  



Process 14 is performing matrix addition for rows 28 to 28 of matA and 
matB... 
Process 14, row 28 of matAdd is: 56 65 50 98 143 84 76 21 98 112 65 
36 99 181 32 89 93 129 171 78 157 60 45 75 133 69 87 146 97 156  
Process 15 is performing matrix addition for rows 29 to 29 of matA and 
matB... 
Process 15, row 29 of matAdd is: 81 158 122 85 108 69 121 136 90 171 
100 60 107 52 93 143 46 39 25 170 69 35 130 116 163 69 89 102 67 39  
Process 0 is performing matrix addition for rows 0 to 1 of matA and 
matB... 
Process 0, row 0 of matAdd is: 118 99 91 61 93 145 92 151 135 35 174 
71 166 139 113 42 39 106 57 81 101 52 161 93 148 98 147 53 109 83  
Process 0, row 1 of matAdd is: 129 33 87 72 94 80 170 40 84 105 127 
11 80 145 54 94 139 93 153 149 126 107 154 40 52 154 38 151 59 52  
Root process (Process 0) is gathering the results and writing to 
matAdd.txt... 
Execution time: 0.002164 seconds 

 

● Since the limit of the number of processors in our hpc machine is 48, we 

can run the program up to across 48 processors. 

  

 

Experimentation, Plotting and Observation for various cases: 

 

Now let us observe the execution times for different cases and plot their graphs. 

a) Keeping the size of the matrix constant and varying the number of processors. 

b) Keeping the number of processors constant and varying the size of the matrix. 

 

a) Keeping the matrix size constant and varying the number of processors: 

 

CASE 1: Size of matrix = 100, No. of processors = 4, 8, 16, 32, 48. 

 

1. Modify the code: 

● Modify the code to set the size of the matrix to a constant, say 100. Or the 

user can always enter the same size while executing the program for this 

case. Also add a file handling part in the code to create a text file, say 

matAdd_exec_times_const_size.txt, to store the execution times run 

across different number of processors. 

 

2. Compile and Run the program: 

● Now let us run the code across different number of processors, say 4, 8, 

16, 32, 48. Run the program at least for 10 times and take the average 



execution time for each processor for better results. 

 

● The generated matAdd_exec_times_const_size.txt would look like this: 

 

4 0.008220 
8 0.008355 
16 0.008421 
32 0.009552 
48 0.120967 

 

3. Transfer the text file to your local machine: 

● Use the scp command to send the matAdd_exec_times_const_size.txt file 

from the cluster to your local machine.  

 

4. Generate plot: 

● Now to generate a plot, you can install gnuplot on your local machine. 

 

matAdd_const_size.gnuplot code: 

set terminal pngcairo size 800,600 
set output 'matAdd_exec_times_const_size.png' 
set title "Execution Time vs Number of Processors" 
set xlabel "Number of Processors" 
set ylabel "Execution Time (seconds)" 
set grid 
plot "matAdd_exec_times_const_size.txt" using 1:2 with linespoints title 
"Execution Time" 

 

● And the corresponding plot would look like this: 



 
● Observation: For a small matrix size (100 x 100), the execution time 

remained nearly constant regardless of the number of processors (4, 8, 

16, 32). However, there was a noticeable increase in execution time when 

using a higher number of processors (48). This is likely due to the 

overhead involved in managing communication between a larger number 

of processors, which outweighs the computational benefits for such a 

small matrix. 

 

 

CASE 2: Matrix Size = 1000, No. of processors = 4, 8, 16, 32, 48. 

 

1. Modify the code: 

● Modify the code to set the size of the matrix to a constant, say 1000. 

 

2. Compile and Run the program: 

● Now let us run the code across different number of processors, say 4, 8, 

16, 32, 48. 

 



● The generated matAdd_exec_times_const_size.txt would look like this: 

 

4 12.278454 
8 9.670586 
16 9.560235 
32 8.284315 
48 11.02440 

 

3. Generate plot: 

● The corresponding plot would look like this: 

 
 

● Observation: With a medium-sized matrix (1000 x 1000), the execution 

time decreased as the number of processors increased, which reflects 

more efficient parallel computation. However, in the case with 48 

processors, there was a slight anomaly where the execution time 

increased, indicating that the communication overhead might have 

surpassed the gains from parallelism at this processor count. 

 



CASE 3: No. of elements = 2500, No. of processors = 4, 8, 16, 32, 48. 

 

1. Modify the code: 

● Modify the code to set the size of the matrix to a constant, say 2500. 

 

2. Compile and Run the program: 

● Now let us run the code across different number of processors, say 4, 8, 

16, 32, 48. 

 

● The generated matAdd_exec_times_const_size.txt would look like this:  

 

4 26.292243 
8 26.954541 
16 31.671684 
32 13.682158 
48 12.340749 

 

3. Generate plot: 

● The corresponding plot would look like this:  

 



 

● Observation: For a large matrix (2500 x 2500), the execution time 

remained nearly constant with 4, 8, and 16 processors. However, 

significant reductions in execution time were observed when running with 

more processors (32, 48). This suggests that for larger matrices, the 

benefits of distributing the computation across more processors become 

more pronounced, improving overall performance. 

 

 

 

b) Keeping the number of processors constant and varying the matrix size: 

  

CASE 1: No. of processors = 48, Matrix Size = 50, 100, 500, 1000, 2500. 

 

1. Modify the code:  

● Modify the code to prompt the user to enter the size of the matrix. Also 

add a file handling part in the code to create a text file, say 

matAdd_exec_times_const_proc.txt, to store the execution times run for 

different sizes of the matrix. 

 

 

2. Compile and Run the program: 

● Let us run the code across a constant number of processors, say 48. And 

enter a different matrix size in each run, say 1000, 2000, 3000, 4000, 

5000, 6000.  

 

● The generated matAdd_exec_times_const_proc.txt would look like this: 

 

50 0.052836 
100 0.090037 
500 0.220396 
1000 2.828991 
2500 15.822379 

 

 

3. Transfer the text file to your local machine: 

● Use the scp command to send the matAdd_exec_times_const_proc.txt file 

from the cluster to your local machine. 

 

4. Generate plot: 



● matAdd_exec_times_const_proc.gnuplot code: 

 

set terminal pngcairo size 800,600 
set output 'matAddexec_times_const_proc.png' 
set title "Execution Time vs Matrix Sizes" 
set xlabel "Matrix Sizes" 
set ylabel "Execution Time (seconds)" 
set grid 
plot "matAdd_exec_times_const_proc.txt" using 1:2 with linespoints title 
"Execution Time" 

 

 

● And the corresponding plot would look like this: 

 
● Observation: Here, we observe there is an increase in execution times as 

the matrix size increases. 

 

 

CASE 2: No. of processors = 32, Matrix Size = 50, 100, 500, 1000, 2500. 



 

1. Compile and Run the program: 

● Run the code across a constant number of processors, say 32. And enter 

a different matrix size in each run, say 50, 100, 500, 1000, 2500. 

 

● The generated matAdd_exec_times_const_proc.txt would look like this: 

 

50 0.016971 
100 0.009197 
500 0.124265 
1000 1.672535 
2500 6.783325 

 

 

2. Generate plot: 

● The corresponding plot would like this: 

 
● Observation: Here, we observe an increase in execution time as the 

matrix size increases. This is not always the case, but since we have 



taken the average values of execution times, it seems to increase as the 

matrix sizes increases. 

 

 

CASE 3: No. of processors = 16, Matrix Size = 50, 100, 500, 1000, 2500. 

 

1. Compile and Run the program: 

● Run the code across a constant number of processors, say 16. And enter 

a different matrix size in each run, say 50, 100, 500, 1000, 2500. 

● The generated matAdd_exec_times_const_proc.txt would look like this: 

 

50 0.003331 
100 0.008179 
500 0.123696 
1000 3.703877 
2500 21.408024 

 

2. Generate plot: 

● The corresponding plot would like this: 



 
 

● Observation: Here, we observe there is an increase in execution times as 

the matrix size increases. 

 

  

 

Conclusion: 

 

● a) Keeping the matrix size constant and varying the number of processors: 

As the number of processors increases, the relationship between execution time 

and processor count does not follow a steady pattern. While using more 

processors generally reduces execution time, particularly for larger matrices, too 

many processors can lead to inefficiencies due to increased communication 

overhead. This effect is especially visible when running with a higher number of 

processors (e.g., 48), where the communication costs can start to dominate the 

computation time, especially for smaller matrices. 

 



● b) Keeping the number of processors constant and varying the matrix size: 

Across all the three cases here, there is a general increase in execution time as 

the size of the matrices grows. This is expected because larger matrices require 

more computation for each process to handle, and thus, the overall time to 

complete the matrix addition increases. Therefore the effect of matrix size on 

execution time becomes more noticeable as the size of the matrix increases. 

 

 


